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Abstract

We prove that asymptotically (as n — o) almost all
graphs with n vertices and 10d n2=s log?17 n edges are
universal with respect to the family of all graphs with
maximum degree bounded by d. Moreover, we provide
a polynomial time, deterministic embedding algorithm
to find a copy of each bounded degree graph in every
graph satisfying some pseudo-random properties. We
also prove a counterpart result for random bipartite
graphs, where the threshold number of edges is even
smaller but the embedding is randomized.

1 Introduction

Given graphs H and G, an embedding of H into G is
an injective edge-preserving map f: V(H) — V{(G),
i.e., for every e = {u,v} € E(H), we have f(e) =
{fw), f(v)} € E(G). We shall say that a graph H
is contained as a subgraph of G if there is an embedding
of H into G. Given a family of graphs H, we say
that G is universal with respect to H, or H-universal, if
every H € H is contained as a subgraph of G.

Consider the probability space of all graphs on n
labelled vertices in which every pair of vertices forims
an edge, randomly and independently, with probability
p. We use the notation G, , to denote a graph chosen
randomly according to this probability measure; i.e., for
any graph G on n labelled vertices and with m edges,
PlGny = G] = p™(1 — ]))(g)‘m. We say that G,
possesses a property ) asymptotically almost surely
(a.a.s.) if P[Gnhp € Ql =1 - 0o(1).

The construction of sparse universal graphs for
various families of graphs arises in the study of VLSI
circuit design, and received a considerable amount of
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attention, see, e.g., [1, 3, 4, 6, 8, 10] and their references.
Since in some applications the cost of a vertex (site)
may be higher than that of an edge (link), one is
particularly interested in (almost) tight H-universal
graphs, i.e. graphs whose number of vertices is equal
(or close) to maxgyey [V (H)|.

In [6] it is proved that for all ¢ > 0 and d > 0
there exists ¢ > 0 such that a.a.s. G, ,, p = ¢/n, is
T(d, (1 ~ e)n)-universal, where T(d, (1 — &)n) is the
family of trees with (1 — &)n vertices and maximum
degree at most d. In a related paper [11], the authors
obtained an algorithm for finding bounded degree trees
inside subgraphs of (n,d, A\)-graphs; in particular, the
result of [6] is turned into an embedding algorithm. In
this paper we study the universality of random graphs
with respect to the family of all bounded degree graphs.

Let d € N be a fixed constant and let H(n,d) =
{H C K, : A(H) < d} denote the class of (pairwise
non-isomorphic) n-vertex graphs with maximum degree
bounded by d and H(n,n;d) = {H C K, , : A(H) < d}
be the corresponding class for balanced bipartite graphs.

By counting all unlabelled d-regular graphs on n
vertices one can easily show that every H(n, d)-universal
graph must have

(1.1) M = Q(n?~2/d)

edges (see [3] for details). This lower bound was
almost matched by a construction from [4], which
was subsequently improved by similar constructions in
[1] and [2], this last matching M up to a constant
multiplicative factor. Those constructions were quite
special and do not resemble a typical, or random, graph
with the same number of edges. For that reason, in [3],
we also studied the universality of random graphs.

For random graphs, slightly better lower bounds
than (1.1) are known. Owing to the threshold for the
property that every vertex belongs to a copy of K411
(see [13, Theorem 3.22 (i)]), the expected number of
edges guaranteeing H(n, d)-universality of G, , must be
at least n?~%/(d+1(log n)l/(dgl), and, similarly, by {13,
Theorem 4.9], it must be at least n?~2/(@+1 for H(n, d)-
universality of G(14.)n,,- Similar bounds apply to the
random bipartite graph G, , p.
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In [3], it was proved that Gp np is a.a.s. H(n,n, d)-
universal if p = en~ 2 1og7~’}7 n and ¢ is large enough,
and that G(14ejn,p 18 a.a.s. H(n,d)-universal if p =

1 1
en~ 7 log? n if ¢ is large enough. We summarize the
best known results in Table 1.

In this paper we prove two related results. The
first one significantly pushes down the edge density p
guaranteeing the universality of Gy np-

THEOREM 1.1. Let d > 1 be fired and let p =
C(d) n= log%’ n, where C(d) is a constant depending
only ond. The random bipartite graph Gp, pn.p s, @-a.5.,
H(n,n; d)-universal.

The second one, which we consider as the main
result of this paper, on the cost of increase in p,
establishes a tight universality of Gp, (and not of
G14+)np)s and provides, as opposed to Theorem 1.1,
a constructive embedding.

THEOREM 1.2. Let d > 1 be fized and let p =
20dn =21 log% n. The random graph Gn, 15, a.a.s.,
H(n, d)-universal. Moreover, we can find a copy of each
H € H(n,d) in G, in deterministic polynomial time.

Tt would be interesting to establish the actual
thresholds for the H(n, n;d)-universality of G, » p and
the H(n, d)-universality of Gy .

Let us emphasize here the algorithmic context of
Theorem 1.2. The universality established in the results
of [1, 3, 4] as well as in Theorem 1.1 is existential in the
sense that the embedding was proved by probabilistic
means. In Theorem 1.2, similarly to [2], a constructive
and efficient embedding is provided.

The embedding algorithm in Theorem 1.2 is in-
spired by the algorithmic version of the Blow-up Lemma
of Komlés, Sarkozy, and Szemerédi [16]. In their set-
ting, they essentially provided an algorithm to embed
bounded degree spanning (bipartite) graphs into super-
regular, dense, bipartite graphs. In our setting, we deal
with sparse random graphs.

The algorithm works in two phases. It starts by
embedding one vertex at a time until almost all of the
vertices of the graph are embedded. The rest of the
graph is embedded by finding a perfect matching in
some auxiliary graph. The first phase is greedy (it
never regrets a decision) but takes into consideration a
few invariants that guarantee that the embedding of the
whole graph can be done. This structure is quite similar
to [16]. However, several differences and subtleties are
inherent to the sparse random graph case.

2 Universality of random bipartite graphs

The proof of tight universality for random bipartite
graphs uses the following strategy developed earlier in
[5, 17, 18]. Let G = (U,W; E) C K, be some fixed
graph. We partition W = W; U .- -U W2 where W] =
m = n/d®. Given any H = (X,Y,Ey) € H(n,n;d)
we may apply the Hajnal-Szemerdi Theorem to the
graph H2Y] = (Y, {{y1, 92} : dist(y1,92) = 2}). Since
the maximum degree in H?[Y] is at most d(d — 1) <
d? — 1, this theorem can be used to partition the set ¥’
into equal-sized sets Y1, ..., Yy with each Y; being an
independent set in H?[Y]. By construction, every Y; is
a two-independent set over H, meaning that every two
vertices in Y; are at distance at least 3 from each other.

Without loss of generality we may and will assume
that each vertex y € Y has degree degy(y) = d (allow-
ing the vertices of X to have higher degrees). This can
be achieved by adding extra edges, if necessary, while
making sure that the sets Y; remain two-independent.
This is possible, since md = n/d < n/2.

We shall construct an embedding f: V(H) — V(G)
of H into G such that f(X) = U and f(¥;) = W, for
every i. First, we take a random bijection 7: X —
U. Then, we show that, a.a.s., one can construct
bijections fi: Y; — W, such that f defined by fly, = fi
and f|y = 7 is a valid embedding of H into G.

Given 7 and 4, let A = A(¢,w) be an auxiliary
bipartite graph between vertex sets Y; and W, such
that {y,w} is an edge of A iff Tg(w) 2 7(Tu(y))
Our goal is to show that for almost all bijections = and
for all i = 1,...,d2, the graph A(i,7) has a perfect
matching M;. These perfect matchings naturally define
bijections f; as required.

We shall prove that a graph satisfying the following
pseudo-random properties is H(n, n; d)-universal.
P1(v) For all i = 1,...,d? and for every collection &

of s < (1—v)m pairwise disjoint, non-empty subsets

of U, each of size d, and for every subset T C W;

of t = |T| = m — s+ 1 vertices, there exist w € T

and S € S such that I'g(w) 2 S.

P2 For all w,w' € W, w # w', we have

and

deg(w,w') = |T(w) NT(w")| ~ np.

deg(w) ~ np

P3 Given any U’ C U with |U’| > n/2 there are at
most 100/p vertices w € W such that |I'g(w) 0

U'l < pn/4.

Property P1(v) is readily established for random
graphs with the help of Lemma 2.1. The other prop-
erties follow from direct applications of Chernoff and
union bounds.
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Table 1: Summary of (best) known universality results (log powers are omitted).

Universality of Upper bound | Lower bound | Reference
H(n,n;d) in Gp nyp p=n"1 Theorem 1.1
Random [
Graphs H(n,d) in Gy, p = n- n—2/(d+1) M
H(n,d) in G1ieynp p=n"1 3]
Constructive H(n,d) in G |E(G)| = n?-2/d n2-2/d 1,2, 4]

LEMMA 2.1. Fiz k > 1 and let N = N(n) and m =
m(n) < N/k. For all v > 0 there exist ¢ > 0 such
that if p > en~Y*(logn)/* then the random bipartite
graph G(U, W, p), where (U} = N and |W| = m, has the
following property a.a.s.:

For every collection S of s < (1 — v)m pairwise
disjoint, non-empty subsets of U, each of size at most k,
and for every subset T C W oft = |T| =m —s+1
vertices, there ezistw € T and S € S such that Tg(w) D
S.

To prove the existence of a perfect matching in A,
we will use Hall's condition. First note that by Property
P1(v), for all bijections w, Hall's condition holds for
every § C Y, of size |S] = s < m — vm. To cover the
remaining cases, we will show that for almost all 7, for
every T C W; of cardinality 1 < ¢ = |T| < vm, we
have {T"4(T")| > ¢. This establishes Hall’s condition for
all S € Y;, and consequently the existence of a perfect
matching in A follows.

The proof will be split in two cases: (1) small £,
meaning t < a/p, for some o = a(d) and (2) large t,
meaning t > a/p. The probability space over bijec-
tions 7 is seen by different perspectives in those two
cases. Notice that we only have to prove that, for any
fixed 7 € [d?], a.a.s., there is a matching in A = A(i, n);
the union bound then gives us that the same holds for
all ¢ simultaneously.

LEMMA 2.2. There exists a = «(d) such that, a.a.s.,
for every T C W, of cardinality t < a/p, we
have [T 4(T)| > tptn/(224+342).

Proof. [Proof outline] First, we pick representative
sets Ny C T'g(wg) for each w, € T = {wy,...,w}
which are all disjoint and have cardinality pn/2. The
permutation 7w is then exposed by steps: on the kth
step, we expose m~! over the set Nj,. Observe that
if Cy(y) © nH(Ng) for some y € Y; then (y,wy) is
an edge of A. Also notice that 7=(Ny) is a uniformly
sampled (pn/2)-set from X \ 7! (Uj<k N;).

Since t is small, this procedure does not expose a
large part of 7 and at each step there are many y €

Y, that may be captured by the uniformly sampled
set mT1(Ny).

LEMMA 2.3. For the same o of Lemma 2.2 and a suf-
ficiently small v = v(d) we have, a.a.s., for every T C
Wi of cardinality of/p < t < vm, |[Ta(T)] > t.

Proof. [Proof outline] Assume that Y; = {y1,...,Ym}-
We expose the random permutation m by steps: on the
kth step, we expose the values of 7 over the set X =
Chp(ye). The set m(Xy) is a uniformly sampled d-set
from Uy = U\ 7(U; ., X;)-

Since Uy, is large for all k, most vertices of T have
large degree inside Uy. Using the Bonferroni inequality
we may estimate how many d-sets are contained in some
neighborhood I';(w) NUy, with w € T. The probability
of choosing 7(Xy) inside some neighborhood can be
lower bounded by such an argument and this yields a
proof of the lemma.

Lemmas 2.2 and 2.3 and the union bound shows
that for any H € H(n,n;d) and G satisfying pseudo-
random properties P1{v) (with v as in Lemma 2.3),
P2 and P3, a.a.s., a random permutation 7 ensures
that A(4,7) has a perfect matching for all i, hence, we
can define all f;: Y; — W, from those matchings and
establish the embedding needed to conclude the proof
of Theorem 1.1.

3 An embedding algorithm for bounded degree
graphs

For this section, let d € N and ¢ = {3(d® + 1)}~! be

fixed and let p = Cn~ Y2 jogt 4y where C = 20d.

We shall assume that n is large enough with respect

to d and e.

We start by defining a suitable notation for the
common neighborhood of a vertex-set.

DEFINITION 3.1. Given a graph G and S C V(G), let
Ia(S)={zeV(G) : SCTlalx)},

where I'g(x) denotes, as usual, the neighborhood of the
verter x in G.
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Assume that V(H) = [n] and that the last n/(d%+1)
vertices are at distance at least 3 from each other.

REMARK 3.1. Notice that we can obtain a set
of n/(d?+1) vertices that are at distance at least 3 from
each other by a greedy method: start with an arbitrary
verter x, eliminate at most d* vertices that might be at
distance 1 or 2 from z, select another arbitrary vertex
and repeat.

Now let us describe an algorithm that tries to embed
any graph H with n vertices and A(H) < d into
some other n-vertex graph G (hence, if it succeeds, the
embedding will be a bijection). We use a sequence of
auxiliary bipartite graphs Iy = Ky () v(q), I1,... with
classes contained in V/(H) and V(G) respectively. Let f;
denote the embedding constructed after iteration j. The
vertices of I; are the non-embedded vertices of H and
the free vertices of G. The edges in the graph I;, j > 1,
indicate the possible extensions of f;_,. In particular,
for every non-embedded x € V(H), T';(z) = I'1;(z) C
V(G) is given by!

(32) La(£(Tu @)\ f;(V(H)).

The set I';(z) can be thought as a candidate set for z,
since z could be mapped to any element of I';(x) while
still preserving the embedding.

The algorithm operates in two phases. In the
first phase, we attempt to embed between (1 — 2&)n
and (1 — g)n vertices, one by one. By our choice
of £, the vertices left to be embedded in the second
phase (if the first phase is successful) are such that the
distance between any two of them is at least 3, that
is, their neighborhoods are disjoint and they form an
independent set. This condition is enough to ensure
that if we embed one vertex of such a set, all the other
non-embedded vertices are only affected by possibly
missing one candidate. This means that the second
phase consists solely of finding a perfect matching in
the remaining graph I;, where ¢ is the last step of the
first phase.

Thus, phase one deserves a more delicate analysis.
We shall give a brief informal view first. There are a
few local conditions that the algorithm tries to preserve:
the degree of every vertex x € V(H) in the sequence of
graphs I; is tightly related to the number of embedded
neighbors of x at the jth step; every vertex w € V(G)

degree of w € V(G) in I; is lower bounded.

T3We shall abuse notation and consider f;(S) as being the image
of the intersection of S and the domain of f; (which is a subset

of V(H)).

has a reasonable number of unused neighbors in G; the

Let us describe how the graph I; changes when the
embedding is extended by one vertex, say  — w. On
the V(G) side of I, these changes are mild. Indeed,
any unused vertex w' € V(G) may only lose vertices
in Dg(z) U{z}. On the V(H) side, we may have more
drastic changes. If 2’ € V(H) is not embedded then
it may lose w as a candidate, and, if in addition z’ €
'z (x), then it loses considerably more vertices. In this
case, the new candidate set of 2’ consists of the old one
intersected with I'g(w).

In order to keep the good local conditions men-
tioned above, we might have to deal with vertices that
fail those conditions. More concretely, we shall define
invariants for the sequence I;. Assuming that the local
conditions are satisfied for I, we must extend the em-
bedding and produce an I,;; that corresponds to the
extended embedding such that 1,4, also respects all the
local conditions. The way phase one accomplishes this is
by dealing with vertices that fail any of those conditions
right away: if the current embedding makes some bad
vertex fail a local condition, the algorithm picks a bad
vertex w—we then call w a critical vertex—and extends
the embedding using w. The potential problem here is
that we might have to deal with more and more vertices,
eventually stumbling upon a vertex that simply cannot
be used.

We remark that not all bad vertices are necessarily
critical. A vertex z € V(H) might become bad if it
does not have a sufficient number of candidates, but
this number depends on how many neighbors of z are
already embedded. If some 2’ € I'g(z) becomes critical
before z it may save z from its bad reputation.

By imposing a few structural conditions on a de-
terministic graph G, we are able to prove that the set
of all critical vertices has a very limited size. In fact,
so limited that it is negligible compared to the degrees
inl g-

Let Fj(z) be the set of non-embedded neighbors
of x € V(H), that is, T () \ f; (V(G)). Let v;(z) =
|77 (V(G))NT i (z)]| be the number of embedded neigh-
bors of x € V(H). Both Fj(z) and v;(z) depend on f;,
hence, when f; is extended by possibly several vertices,
these values change accordingly. It will be convenient
to identify f; by a matching in V(H) x V(G).

At the beginning of the jth iteration (line 1.5),
the following invariants hold (f; is determined by the
matching M).

INVARIANT 3.1. For all non-embedded z € V(H), we
have

deg;(z) = |T;(z)] > (p/4)"7Pen.
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Algorithm 1: Phase 1

1.1 M «0; // initialize embedding

12 Vy «— V(H), Vo — V(G); // set of free
vertices in G and H

1.3 Iy — Kv, v, j « 0; // initialize
auxiliary graph

1.4 while [M] < (1 —2¢)n do

1.5 x — min(Vy );

1.6 [(2) « clean-up(z);

1.7 if I';(x) = 0 then

1.8 L abort; // could not embed vertex I

1.9 y «— min(Tj(x));

1.10 extend-embedding(r, y);
1.11 restore-invariants;
1.12 LIj+1 %——Iﬁj*—j-{" 1;

Procedure restore-invariants

2.1 while 3z failing Invariant 3.1 or 3w failing
Invariant 3.2 do

2.2 cr e cr+ 1
2.3 if cr > cr™®* then
2.4 abort phase 1; // too many critical
L vertices!
2.5 if 3 failing Invariant 3.1 then
2.6 T'j(x) « clean-up(x);
2.7 if T'j(z) = 0 then
2.8 abort phase 1; // failed on
L critical vertex of H
2.9 w « min(T';(x));
2.10 L extend-embedding(x, w);
2.11 else if Jw failing Invariant 3.2 then
2.12 7 — {z ej(w) : w e clean-up(x)};
2.13 if Z =1 then
2.14 abort phase 1; // failed on
L critical vertex of G
2.15 x + min(Z);
2.16 B extend-embedding(z, w);
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INVARIANT 3.2. For all w € V(G)\ f;(V(H)),
1
i deg;(w) = é—\/ﬁlogn and

i [Ta(w)\ f;(VH)] = %spn.

We shall also have an inney invariant. Nawely, an
invariant for Procedure restore-invariants. First, let
us fix the maximum number of critical vertices that the
algorithm may handle, cr™** = 2(d? + 2)v/n.

INVARIANT 3.3. At the beginning of every iteration of
Procedure restore-invariants (line 2.2), we have, for
every non-embedded x € V(H),

deg;(x) = (p/4)"i(¢17)5” JpSMUTES

Procedure clean-up(x)
31 Fj(x) « Tp(a) v Vu; /7 non-embedded
neighbors of x
3.2 foreach y € Fj(x) do
3.3 B, « {Z S F,’i(:I:) : }F(;(z) M Fj(y)l <
(p/4) 0% en);

3.4 veturn ;(x) \ U, er, ) Bvi

Procedure extend-embedding(u,v)
a1 M — MU {(u,v)};
4.2 VH A Vu \{’LL};
4.3 VG e V(; \ {’U};
a4 I; « (VH,VG;edges determined by eq. (3.2));

4 Universality of random graphs
In this section we show that both phases of the algo-
rithm succeed in obtaining the desired embedding as
long as G is a graph satistying the following:
(i) for every pair of (not necessarily disjoint)
sets A, B C V(G) such that [A]-|B] = n logn/p,
we have 5
eq(A,B) =2 gpiAl |Bl,
where edges in AN B are counted twice;
(ii) 6(G) = 0.9pn;
(iii) for every set T C V(G) of size |T| = epn/4
and every collection of k = Cop~%logn disjoint
sets Xy,...,Xr € V(G)\ T having at most d
elements each, there is some i@ € [k] such that

1 -
P3(X)NT| = 5PN T



(iv) for every T C V(G) with |T| = y/n and disjoint
sets X1,..., Xa C VIG)\T, with a > en/(d*+1),
having at most d elements each, there is y € T
such that X; € T'g(y) holds for at least 5/nlogn
indices 1 € [al;

for every T C V(G) with |T| = r = Jy/nlogn
and every collection of disjoint sets X;,..., X, C
V(G) \ T having at most d elements each, there
isw e T and i € [r] such that X; C T'g(w).

Standard use of Chernoff bounds prove that
a.a.s. G p satisfies all these properties.

THEOREM 4.1. Properties (i-v) are a.a.s. satisfied
by G, p.

4.1 Phase one succeeds In this subsection we deal
with the analysis of the first phase of the embedding
algorithm.

THEOREM 4.2. Assume that G is a graph satisfying (i~
v) and H has degree bounded by d. Both graphs have n
vertices, with n sufficiently large. Then, Algorithm 1
does not abort.

If the algorithm does not abort, it finds a valid
(partial) embedding of H into G. Furthermore, the only
vertices that remain unembedded after the execution are
at distance at least 3 from each other in H. Therefore,
one can proceed to phase two in order to complete the
embedding since any perfect matching in the remaining
auxiliary graph is a valid extension of the embedding.

The proof of Theorem 4.2 consists of proving
that all invariants are kept (in particular, Proce-
dure restore-invariants is correct) and that none of
the abort conditions ever hold (see lines 1.8, 2.4, 2.8,
2.14).

4.2 Phase two succeeds After phase one succeeds,
we are left with independent vertices with disjoint
neighborhoods to embed. Indeed, phase one embeds
at least (1 — 2¢)n vertices and at most cr™® of them
are critical. Thus, by our choice of €, the unembedded
vertices must belong to the n/(d?® + 1) last vertices
of V(H).

Furthermore, by the Invariants 3.1 and 3.2.3, we
have minimum degree on both sides of I;, where ¢ is
the last iteration of the first phase. Let A denote
the set of unembedded vertices of H and B the set
of free vertices of G. Clearly |A| = |B|, furthermore,
by our choice of C, we can ensure that the minimum
degree on both sides is at least %\/ﬁlog n. Hence, if
Hall’s condition is not satisfied in I;, there must be a
set A/ C A such that [[;(A")] < JA/|. Setting B’ =
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B\ T (A", we must have |I'\(B)| < |B'|. It follows
that |A’|,|B’| > $y/nlogn. Furthermore, there is no
edge in I, between A’ and B’. But this contradicts
Property (v).

Algorithm 5: Find Embedding

5.1 execute Phase 1;
5.2 M’ « perfect matching in I;; // Phase 2
5.3 return M U M’;

COROLLARY 4.1. Given a graph G on n wvertices sat-
isfying (i-v) and a graph H on n vertices such
that A(H) < d, there is a polynomial-time algorithm
that finds an embedding H — G.

From Theorems 4.1 and Corollary 4.1 we obtain our
universality result for random graphs, Theorem 1.2.
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