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Let G be a fixed connected multigraph with no loops. A random n-lift of G is obtained
by replacing each vertex of G by a set of n vertices (where these sets are pairwise disjoint)
and replacing each edge by a randomly chosen perfect matching between the n-sets
corresponding to the endpoints of the edge. Let X be the number of perfect matchings
in a random lift of G. We study the distribution of X in the limit as n tends to infinity,
using the small subgraph conditioning method.

We present several results including an asymptotic formula for the expectation of X¢
when G is d-regular, d > 3. The interaction of perfect matchings with short cycles in
random lifts of regular multigraphs is also analysed. Partial calculations are performed for
the second moment of X¢, with full details given for two example multigraphs, including
the complete graph Kjy.

To assist in our calculations we provide a theorem for estimating a summation over
multiple dimensions using Laplace’s method. This result is phrased as a summation over
lattice points, and may prove useful in future applications.

1. Introduction

Throughout, let G be a fixed connected multigraph with g vertices and no loops. For
simplicity we assume that V(G) = [g] := {1,...,g}. A random n-lift of G is a random
graph on the vertex set V; UV, U---UV,, where each V; is a set of n vertices and these
sets are pairwise disjoint, obtained by placing a uniformly chosen random perfect matching
between V; and V;, independently for each edge e = ij of G. Denote the resulting random

T Supported by grant N201 036 32/2546.
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2 C. Greenhill, S. Janson and A. Rucinski

graph by L,(G). The perfect matching corresponding to the edge e of G is called the fibre
corresponding to e, which we denote by F,. Note that the degree of v € V; in L,(G) is
equal to the degree dg(i) of vertex i in G. In particular, if G is d-regular, then so is L,(G).
We are interested in asymptotics as n tends to infinity.

This model of sparse random graphs was introduced and studied in a series of papers
by Amit, Linial, Matousek and Rozenman [2, 3, 4, 12]. Linial and Rozenman [12] studied
the existence of a perfect matching in L,(G) and described a large class of graphs G for
which L,(G) a.a.s. contains a perfect matching (for n even, at least). This class contains all
regular graphs and, in turn, is contained in the class of graphs having a fractional perfect
matching (see Section 3 for a definition). Observe that if G has a perfect matching then
every lift of G has at least one perfect matching.

In this paper we study the number of perfect matchings in L,(G) in the limit as n
tends to infinity, where G is a graph with a fractional perfect matching. To do this we
use the small subgraph conditioning method, which provides a concentration result based
on the second moment method conditioned on the number of small cycles. For a concise
description of the method, see [11, Theorems 9.12 and 9.13].

Let X¢g be the number of perfect matchings in L,(G). To apply the small subgraph
conditioning method, asymptotic expressions for E X and E(XZ%) must be found. Then
the limit of the ratio E(X2)/(E X)? is compared with a quantity which depends upon the
interaction of perfect matchings and short cycles in L,(G).

In Sections 3 and 4 we write the first and second moments of X¢ as multiple sums of
some explicit terms, and then estimate the sums by Laplace’s method. This is a standard
method for similar moment estimates, and in particular, it has been used in several papers
on random regular graphs. (See, for example, [11, Chapter 9] and the references given
there.) However, in the present paper, each summation is over an index set of rather
high dimension with a number of side conditions on the indices, while in many previous
applications the summations are only over one or two variables. To assist with these
calculations, we present a general theorem (Theorem 2.3) that encapsulates Laplace’s
method for a general situation, with sums over a lattice in a subspace of RY. We do this
both because we think that it clarifies the argument in the present work, and because
we hope that it might be useful in future applications. The necessary terminology and
notation is introduced in Section 2, where Theorem 2.3 is stated. The proof of Theorem 2.3
can be found in Section 6.

Using this machinery we prove an asymptotic formula for E X for any connected
regular multigraph G with degree at least three (see Theorem 3.3). However, two difficulties
(one algebraic and one analytic) have prevented us from obtaining an asymptotic formula
for E(X2) in the same generality, though we have partial results in Theorem 4.2
and Lemma 4.3. We illustrate these results by calculating E(X2) for two multigraphs:
specifically, for the complete graph K4 and for the multigraph consisting of two vertices
and three parallel edges, which we denote by K3. These calculations were performed with
the aid of Maple. (A file containing the Maple commands is available from [20].)

In Section 5 we prove the necessary results relating to short cycles in random lifts
(Lemmas 5.1, 5.2 and Corollary 5.4). As corollaries, using [11, Theorem 9.12] we obtain a
concentration result for X¢ in our two illustrative examples (see Corollaries 5.5 and 5.6).
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On the Number of Perfect Matchings in Random Lifts 3

One of the most interesting questions on random lifts is the problem of existence of a
Hamilton cycle. There is a conjecture (attributed to Linial) that a random lift of Ky is
a.a.s. Hamiltonian. Indeed, we believe that a.a.s. L,(G) is Hamiltonian for all connected
d-regular loop-free multigraphs G with d > 3. (This is known to be true when G is a
multigraph with exactly two vertices and at least three edges: see Remark 1 below.)
Burgin, Chebolu, Cooper and Frieze [6] showed that a.a.s. L,(K,) is Hamiltonian when g
is large enough (see also [7] for the directed case). The arguments in [6] are combinatorial
and utilize the celebrated idea of Posa. For small g, we feel that the small subgraph
conditioning method may be a fruitful line of attack, as it has been very successful for
studying Hamilton cycles in random regular graphs (Robinson and Wormald [17, 18]; see
also [11, Chapter 9]). This remains an open problem.

Remark 1. We allow the multigraph G to have multiple edges. The simplest case is when
G consists of only two vertices, with d parallel edges between them. The random lift L,(G)
is then a random bipartite (multi)graph obtained by taking the union of d independent
random matchings between two sets of n vertices each. Such sums have been studied in
[15], where they were shown to be contiguous to random bipartite d-regular (multi)graphs.
The latter, in turn, is known to be a.a.s. Hamiltonian (see [16] for a standard, second
moment method proof). Hence, for this small multigraph G with d > 3, the random lift
L,(G) is a.a.s. Hamiltonian too.

Remark 2. Random lifts of multigraphs with loops can also be formed. As in [2], the
fibre corresponding to a loop is given by the n edges io(i) for a random permutation ¢
of [n]. This is a random 2-regular (multi)graph, denoted by P(n) in [11, Remark 9.45].
While we do not allow loops in our current work, for several reasons, we believe that the
results here can be extended to multigraphs with loops. A simple and interesting case is
when G consists of a single vertex with d/2 loops (d even). Then L,(G) consists of the sum
(union) of d/2 independent copies of P(n). Such sums have been shown to be contiguous
to random d-regular (multi)graphs in [8].

2. Notation, terminology and a summation theorem

As mentioned above, G denotes a fixed connected multigraph with g vertices and no
loops. For simplicity we assume that V(G) = [g] := {1,...,g}. We denote the number of
edges in G by h. (Often we assume G to be d-regular, and then h = dg/2.) Let A = Ag
be the g x g adjacency matrix of G and let A = Ag be the incidence matrix of G, with g
rows and h columns. Thus

AAT = A+ Dg, (2.1)

where Dg is the diagonal matrix with entries dg(i), i € V(G). Denote the eigenvalues of 4
by ai,..., 0.

In Section 4 we also need a directed incidence matrix for G. Give each edge in G an
(arbitrary) direction, and let Ag be the corresponding directed incidence matrix. In other
words, Ag is the g X h matrix obtained from A by changing the sign of one of the two 1s
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in each column. Then
AGAL = Dg —A. (2.2)

Our version of Laplace’s method (Theorem 2.3) involves lattices. A lattice is a discrete
subgroup of RY. (Discrete means that the intersection with any bounded set in RY is
finite.) It is well known that every lattice £ is isomorphic (as a group) to Z" for some
r with 0 < r < n. The integer r is called the rank of £ and is denoted by rank(L£). In
other words, every lattice £ has a basis, i.e., a sequence Xi,...,X, of elements of £ such
that every element of £ has a unique representation Y ;_, n;x; with n; € Z. Furthermore,
the basis elements xi,...,x, are linearly independent (over R); thus the rank equals the
dimension of the linear subspace spanned by L.

The basis is not unique (except in the trivial case r = 0); if E = (&;;) is any r x r integer
matrix such that the determinant det(Z) = +1 (which is equivalent to the condition that
both = and E~! are integer matrices) and (x;); is a basis of £, then y; = >, &ijx; defines
another basis yy,...,y,; conversely, given (x;)], every basis of £ is obtained in this way by
some such matrix =.

A unit cell of the lattice £ is the set {>_, t;x; : 0 < t; < 1} for some basis (x;); of L. If
L <= RY has full rank N, and U is any unit cell of £, then {x + U}c, is a partition of RV,

The unit cells of a lattice £ all have the same r-dimensional volume (Hausdorff measure),
where r = rank(L); this volume is the determinant (or covolume) of L, and is denoted by
det(L).

If (x;)i_; is a sequence of vectors in R, the symmetric matrix ({x;, Xj))i =1 of their
inner products is called their Gram matrix. It is well known that xi,...,x, are linearly
independent if and only if the Gram matrix is non-singular, i.e., if and only if the Gram
determinant det({x;,x;));;_; # 0.

The following results are well known.

Lemma 2.1. If (x;)l_, is a basis of a lattice L in RN, then

det((x;, x;)); j=; = det(L)*. (2.3)

Lemma 2.2. If Ly < L, are two lattices of the same rank, then L,/L; is a finite group of
order det(L)/ det(L,).

The Hessian or second derivative D?¢(xo) of a function ¢ at a point xo € RY is an
N x N matrix; it is also naturally regarded as a bilinear form on RV. In general, if B
is a bilinear form on RY, it corresponds to the matrix (B(e;,e;)),_;, Where (¢;); is the
standard basis. We define the determinant det(B) as det(B(e;, ej)){}zl, and note that if
Z1,...,2y is any basis in RV, then

N
det(B(z,—, Zj))i,.izl 24
det(z 20,

We are interested in the restriction to a subspace. If B is a bilinear form on R" and

¥ = RN is a subspace, we let det(B|y) denote the determinant of B regarded as a bilinear

det(B) =
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On the Number of Perfect Matchings in Random Lifts 5

form on V. By (2.4), this can be computed as

det(B(z;,2)));,_, (2.5)

det(B|y) = “det((zi2)) oy

for any basis zy,...,z, of V.
We now state our general theorem for performing summation over a lattice using
Laplace’s method.

Theorem 2.3. Suppose the following.

(i) £ = RY is a lattice with rank r < N.
(ii) V = RN is the r-dimensional subspace spanned by L.
(ili) W = V 4+ w is an affine subspace parallel to V, for some w € RV,
(iv) K = RY is a compact convex set with non-empty interior K°.
(v) ¢ : K > R is a continuous function and the restriction of ¢ to K N W has a unique
maximum at some point xo € K° N W.
(vi) ¢ is twice continuously differentiable in a neighbourhood of xo and H = D>¢(xo) is
its Hessian at x.
(vil)p : Ky = R is a continuous function on some neighbourhood K = K of xo with
y(xo) > 0.
(viii) For each positive integer n there is a vector /, € RN with /,/n € W.
(ix) For each positive integer n there is a positive real number b, and a function a, : (L +
/n) NnK — R such that, as n — oo,

an(£) = O (bye" /Moy, (€ (L+Ly)NnK, (2.6)
and

an() = bu(p(£/n) + o(1))e"/™, {e(L+1y)NnKy,

uniformly for ¢ in the indicated sets.
Then, provided det(—H|y) # 0, as n — oo,

(2m)" " 2p(x0) 2
n l) ~ bn d n(b(xo). 2.7
>, @) det(L) det(—H[p)2 "¢ @7

LE(LALn)mK

We remark that Theorem 2.3 can be generalized to allow n to tend to infinity along any
infinite subset I of the positive integers, with the same proof. (Then (viii) and (ix) need
only hold for every n € 1.)

3. Expected number of perfect matchings
A fractional perfect matching of the multigraph G is a function f : E(G) — [0, 1] such that
> fley=1 forallve V(G).

esv
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Note that every d-regular multigraph has a trivial fractional perfect matching obtained
by giving each edge weight 1/d. We often treat f as a vector (f(e))eck(G)-

First, note that if there is a perfect matching at all in a lift L,(G) of G, then there
exists a fractional perfect matching f of G such that nf(e) is an integer for each e. Indeed,
suppose that M is a perfect matching of a lift of G. Let /., be the number of edges from
the fibre F, in M, for each edge ¢ € E(G). Then the function f : E(G) — [0, 1] defined by
f(e) =¢./n is a fractional perfect matching of G. Conversely, suppose that there exists a
fractional perfect matching z = (z.), in G such that nz, is an integer for each e. We may
construct an n-lift of G that contains a perfect matching as follows. First take nz, edges
above each edge e € E(G), with all their endpoints disjoint. This yields n endpoints above
each vertex i € G, so we have constructed the sets V;, and a perfect matching. Extend
this perfect matching to an n-lift by adding further edges between V; and V; for all edges
e = ij. Consequently, L,(G) has a perfect matching with positive probability if and only
if there exists a fractional perfect matching z with nz integer-valued. From now on, for
a given graph G we consider only those values of n for which this holds, since otherwise
trivially X¢ = 0.

Remark 3. It seems an interesting problem to characterize the set of such n for a given
graph, but this is outside the scope of the present paper, and we note only the following
examples. If G itself has a perfect matching then every n is allowed. On the other hand,
if g is odd, then only even n are possible. If G is of odd order and Hamiltonian, then
the set of allowed n is exactly the set of positive even integers. If G is d-regular, then
(1/d,...,1/d) is a fractional perfect matching, so every multiple of d is an allowed n (but
there might be others too). The result by Linial and Rozenman [12] implies that for a
large class of graphs defined there, every large even n is allowed. Note finally that if ny
and n, are allowed, then so is n; + ny. Hence the set of allowed n is always infinite, unless
it is empty, so it makes sense to talk about asymptotic results.

Suppose that there exists a fractional perfect matching z = (z.), in G with nz an
integer vector. If a perfect matching in L,(G) has /, edges in the fibre F, over e, then
S oy le =n=nY,., z forevery e,so (), — nz belongs to the lattice £}’ in RE(® defined
by

ﬁg) = {(ve)e e ZEO) . Zve =0 foreveryve V(G)}

esv

= {veZF9 : Ay =0}.

(The superscript 1 denotes the first moment.) Here, and elsewhere when convenient,
we think of the vectors as column vectors although we write them as row vectors for
typographical reasons. Conversely, if £ = (Z.). is a vector such that / —nz € Eg), then 7
is an integer vector and >, /. =), nz. = n for every v.

Given such an integer vector (£,). € E(Gl) + nz, let us compute the expected number of
perfect matchings in L,(G) with Z, edges in the fibre F,. Clearly this number is zero unless
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0 <7, < nforall e. Then the endpoints of the edges in the matching may be chosen in
e H(/ n=2
veV(G) Heab
ways, and for each choice, there are /.!(n—/,)! possibilities for the fibre F,, with
probability 1/n! each. Hence, defining K = [0, 1]%(9) we have
EXe)= > al), (3.1)
fe(ﬁg)-f-nz)ﬂnK

where

an(/) == nl¢" hH(n_/)'.

(Recall that h denotes the number of edges in G.)

We wish to evaluate the sum (3.1) asymptotically by Laplace’s method: more precisely,
by applying Theorem 2.3. We use Stirling’s formula in the following form, valid for all
n > 0, where x V y := max(x, y):

In(n)) =nlnn—n+in(nv 1)+ {2z +0(1/(n+ 1)). (3.2)

Let x, = /./n for all e € E(G). Applying (3.2) we obtain, uniformly for / € (,C(Gl) +nz)N
nk,

In(ay(£)) = (g — W) In(n) + > (In((n —£o)!) — In(Z. 1))

ecE(G)
= (g — h)(n(In(n) — 1) + 1 In(n) + § In(2n) + O(1/n))

+ Y (n=24)(In(m) — ) +n Y ((1—xo) In(1 = xe) — xe In(x))

¢€E(G) ¢€E(G)
1 ! !
Z 1— - —
+2 Z(ln(( X)) Vi) —=In(x, v nh) + ZO(/ +1+n—/ —i—l)
¢€E(G) €E(G)

Since
2 fe=32 D fe=3) = en
e€E(G) v esv

after cancellation, a,(/) can be expressed as

an(?) = by (7 /n) exp(nd(/ /n)) (1 +0 (mln/i-l—l) +0 (n_rmlw))

where, for x € RE(©),
by = (2nn) ¢/, (3.3)
= (1= x.) In(1 = x) — x, In(x,)), (3.4)

1—x, 1/2
p(x) :=H< . ) : (3.5)

e
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except that if some x, or 1 — x, is 0, we replace it by 1/n in (3.5). This implies that a,(/)
satisfies condition (2.6) of Theorem 2.3 with the above b,, ¢, and y. We will now check
all the remaining assumptions of Theorem 2.3. Let

W = {x = (x.) € REW© :er =1 foreveryv e V(G)} = {x cAx = (1,..., 1)

esv

As is well known, and described in Section 6 in detail, the sum (3.1) is dominated by the
terms where ¢(//n) is close to its maximum. In order to find the maximum, we restrict
ourselves to regular multigraphs, where the result is simple. (The method applies to other
graphs as well, provided one can find the maximum point(s) of ¢.)

Lemma 3.1. Suppose that G is d-regular, where d > 3. Then ¢ defined by (3.4) has a unique
maximum on KN W={x € K : Ax = (1,...,1)}, attained at the point x° = (1/d,...,1/d).

The maximum value is
o &, ((d—1)"
¢(X ) - E ln< dd_2 5

and, for vy in (3.5) and the Hessian D@,

dd—2
) =@ -1 ) = =D
Proof. We write ¢ = 3",y bvr Where
$olxe €3 v) = (1= x)In(l —xo) — xc In(xe). (3.6)
esv
Fix a vertex v € V(G). We rename the variables x,, e 2 v, by x1,..., Xy, for convenience.

Since ¢, is continuous, it has a maximum over the compact set

d
= {(xl-)i e0.14:) xi= 1}.

1

Let x* € £; be a maximum point of ¢,. Assume first that x” is an interior point, i.e., that

x" € (0,1)%. Then the function f(y) = ¢u(x} + ¥, x5 — y,X5,...,x}) achieves a maximum at
y = 0. Therefore, f'(0) = 0 and, by the chain rule,
0ds(x), , 0ds(x), ,
D) oy _ 000, )
0x1 0x7

By the same argument (or by the general Lagrange multiplier method), we have that for
some constant ¢, > 0

0¢u(x)
6x,»

x")=¢, fori=1,...,d.

But
0py(x)

— (") =—In(l —x;) —Inx; — 2,
6x,»
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$0
x{(1—x}) =exp{—c, —2} foralli=1,....d.

This implies that the xJs are all at the same distance from 1/2. That is, for some constant
¢, >0wehavex! =1/2+ ¢, fori=1,...,d. Since >, x{ = 1 and d > 3, we have to choose
the minus sign for all i, and thus all x} are equal. Since x* € X, we conclude that x} = 1/d
fori=1,...,d.

We also have to consider the boundary of X,. If, say, x{ =0 and 0 < x5 < 1, then f
above is defined for small positive y with f'(0+) = +o0, so x” cannot be a maximum
point on X;. The only remaining points are those with all x; € {0,1}, but then ¢,(x) =0,
while ¢,(1/d,...,1/d) > 0, so these too cannot be (global) maximum points. Hence x' is
the unique maximum point for ¢, on X;.

Setting x° = (1/d,...,1/d) € R%, we have forall x c KN W

B(x) < 3D hulx") = $(x°).

Moreover, the inequality is strict for all x # x°. This proves that x° is a unique maximum
point of ¢ in K N W. Clearly, x° belongs to the interior of K. Moreover, ¢(x°) and y(x°)
are given by the formulas stated in Lemma 3.1.

Finally, the Hessian D?¢(x) is diagonal with entries (1 —x,)~' — x, . Hence, at x* we
have D2¢p(x") = — =21, O

We have verified all assumptions of Theorem 2.3, for any neighbourhood K; of x* with
K; = K°. To apply formula (2.7), we still need to compute the rank of the lattice LI(Gl) and
its determinant det(E(G“ ).

Lemma 3.2.

(1) If G is non-bipartite then the lattice LY has rank h— g and determinant det(ﬁ(l)) =
G G
1 det(4 + Dg)"/%.

(i) If G is bipartite then the lattice LY has rank h—g + 1 and determinant det(ﬁ(l)) =
d G g G
det(A' + Di;)'/?, where the matrix A’ (respectively, D};) is obtained by deleting the last
row and column of A (respectively, Dg).

Proof. For v € V(G) define the vector x* = (1[v € ¢, e € E(G)) given by the row of the
incidence matrix A corresponding to v. For convenience, rename these vectors xi, ..., X,.
Then, by (2.1), the Gram matrix of x,...,x, is AAT = A+ Dg. This matrix is singular if
and only if there exists a non-zero vector y = (y,) € RV with yg = 0. This is equivalent
to y; = —y; for every edge ij, and it is easily seen that, when G is connected, such a
non-zero vector y exists only if G is bipartite, and that if G is connected and bipartite,
there is a one-dimensional space of such solutions y.

Consequently, in the non-bipartite case (i), the vectors xi, ..., x, are linearly independent.
We apply Lemma 6.2 with N = h, m = g and using the vectors xj,...,X,. Let £, £+ and
Ly be as in Lemma 6.2. Then £8) = L', and thus E(é) has rank h—g, by Lemma 6.2.
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Furthermore, by Lemma 2.1 and (2.1),

det(Lo) = (det({xi,x;))E;_y)"* = det(4 + Dg)/2,

Moreover, (t,, v € V(G)) solves (6.1) if and only if t, = —t,, (mod 1) for every edge vw.
Going around an odd cycle, we see that t, =0 or t, = 1/2 for every vertex on the cycle.
Since G is connected, it follows that there are exactly two solutions to (6.1): t, =0 for
every v and t, = 1/2 for every v. Hence ¢ = 2 in Lemma 6.2, and the result follows.

Now suppose that G is bipartite. Then the vectors x,...,x,—; are linearly independent
and x, can be written as a {+1}-combination of xi,...,X,_1, since the sum of vectors x"
over all vertices v on either side of the vertex bipartition gives the vector (1,1,...,1). We
apply Lemma 6.2 with N = h, m = g — 1, and using the vectors xi,...,X,—1. The lemma
asserts that Eg) = £+ has rank h— g + 1, and

det(Lo) = (det({xi,x;))E2))"* = det(4’ + D)2

Finally, let w € V(G) correspond to x,. If (t,, v € V(G) \ {w}) solves (6.1) then ¢, = 0 for
every neighbour u of w. In turn this implies that ¢, = 0 for every vertex u at distance 2
from w, and iterating this shows that t, = 0 for all vertices u in the connected graph G.
Therefore ¢ = 1 in Lemma 6.2 and the proof is complete. L]

Example 1. When G = K4,

det(A + DG) =

3
1
1 = 48.
1

e e N
e
W = = =

Thus Lemma 3.2(i) says that E(Gl) has rank 2 and

det(£) =

_ iz

~[%
[o2e]

Example 2. Let G = K3 be the multigraph with two vertices and three parallel edges.
Then A+ Dg = (; g), and deleting one row and column gives the 1 x 1 matrix (3). Hence
[,(Gl) has rank 2 and det(E(Gl)) = \ﬁ, using Lemma 3.2(ii).

We are ready to apply formula (2.7) of Theorem 2.3.

Theorem 3.3. Suppose that G is d-regular, where d > 3.
(1) If G is non-bipartite then
2(d — 1)dg/4 d—1 dg/4—g/2 (d— 1)d—1 gn/2
det(4 +dI) (d(d - 2)) ( di-2 )
2(d — 1)(d71)g/2 (d— 1)d71 gn/2
~ (d(d — 2))%/4=¢/2 Jdet(A + dI) ( 442 )

EXg ~
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(i) If G is bipartite then

— 1)ds8/4 -1 dg/4—g/2+1/2 _1)d-1\ &2
BXe~ iidt(A’)—F dI) <d((il 2)) (2mn)"” (Mddl)
€ J—
(d— 1)(d71>g/2+1/2 ST (d— 1)d—1 gn/2
(d(d — 2))e/4—g/2+1/2/det(A’ +dI)( mn) (ddz> ’

where A’ is obtained by deleting the last row and column of A.

Proof. Let r be the rank of E(G“, and recall that the Hessian H = D?¢(x°) is diagonal
and equals —d(j__lz)l by Lemma 3.1. Thus H|y = —d(j__f)l too, and det(—H|y) = (d(d 2)" ).
Hence the result follows from (3.1) and Theorem 2.3, using Lemmas 3.1 and 3.2, and the
fact that h = dg/2. U]

Example 3. For G = K4, d = 3, g = 4 and thus, using Example 1,
Y 2n 2n
EXg~ 22 <4) :8(4> _
3./48 \3 3/3\3

Example 4. For the bipartite multigraph G = K3 with two vertices and three parallel
edges we have d = 3, g = 2, and by Example 2

exo~ 35 (3)

4. The second moment of Xg

We now work towards an asymptotic expression for the second moment of X, using the
same approach as in the previous section. To simplify our calculations we consider only
regular multigraphs G of degree at least three.

Given a pair (My, M) of perfect matchings in L,(G), for a vertex i € V(G) and two
(possibly equal) edges e, f 3 i, let /;,; be the number of vertices in V; whose incident
edges in M; and M, lie, respectively, in the fibres F, and F;. Form these numbers into
the gd?-dimensional vector / = /(My, M>) = (Zies i € [g], e,f 3 i). Let

V= {(z,-gf ricglefai)e R for every e € E(G) with endpoints i and J,

Ziee = Zjees Zziefzzzjefa Zzifezzzjfe}'

fai f3j fai f3j
Then the vector / belongs to the set
Q= {(zief) c v nzed . Zzief =n forie [g]}.
e,foi

(The three conditions in V* follow from consideration of the edges in M; N M,, M| and
M,, respectively.) Fix a particular vector z with nz € Q. (By our assumption that there
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is a perfect matching in L,(G), it follows that at least one such vector exists.) Then
0= Eg) + nz, where Lg) is the lattice defined by

LY = {(vief) eV nZE Y vy =0 forie [g]}.

e,foi

(The superscript 2 denotes the second moment.)
Given a pair (M1, M;) of perfect matchings and thus a vector / € Q, we further define,
for an edge e € E(G) and an endpoint i of e,

= Sie(l) = Z fzefy te = ti(£) = Z fzfes Uy = Uie(£) = Z /iff’;
fai, f#e f3i, f#e ff'3i:f.f e

these are the numbers of edges in the fibre F, that belong to M;\ M,, M, \ M; and
(M U M,)“, respectively, so they do not depend on the choice of endpoint i of e. We have,
for every edge e and endpoint i,

Se +te +ue + Lie = 1.

We now calculate the expected number of pairs of perfect matchings (M, M>) in L,(G)
corresponding to a given non-negative integer vector £ = (£;.f) € Eg) + nz. First, partition
each V; into d? subsets of sizes (Zief)ef>i; this can be done in

g
HH =n [T ]
efsilief! i=1 ef3i
ways. Given these partitions there are
Selte ! Cige!

possibilities for the fibre F, (where i is an endpoint of e), with probability 1/n! each. Hence
the expected number of pairs (Mj, M;) of perfect matchings in L,(G) which correspond
to the vector / is given by

edg)2 seltelu\ "2 1
anll) = n! H(n(/w!) I )

icg] “esi i, f+#e flef :

Thus we can write

E(XG) = > al), (4.1)

/E(C(Gz)-‘rnz)ﬁnK

where K = [0, l]g"z. This will allow us to apply the same arguments as used in Section 3.

We now switch to continuous variables x € ]Rgdz, where x;.; corresponds to /s /n. Define
the functions ;. = 6i.(X), Tie = Tie(x) and ;. = 7i.(x) to be continuous scaled analogues
of s, tie and u;, respectively. That is,

Z Xief » Tie = Z Xifes Yie = Z Xiff's

faif#e fai.f#e fof'20f.f Fe
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so that g,(//n) = si(/)/n and so on. Then, applying (3.2), it follows that a,(/) satisfies
condition (2.6) of Theorem 2.3 with

b, = (2nn)g/2+3h/2—d2g/2

(x) H H(O’le‘l?te/te) H ;}/2’

i€[g] eai f3i, f+#e

¢(X) = % Z Z (0-1'6 11’1 Oie + Tie ln Tie + Vie ln Vie — Xiee hl Xiee — 2 Z xief 11’1 Xief) . (42)
iclg] esi fai,f#e

(Again, if some Xief, Gie, Tie OF Vi 15 0, then we replace it by 1/n in the definition of y(x).)
Let W be the domain defined by

W = {(xief) eV inef =1 forie [g]}.
e,foi
We conjecture that for all connected d-regular multigraphs G with no loops, the function
¢ has a unique maximum on K N W, attained at the point

X0 =1/d%...,1/d%).
Unfortunately, we have been unable to prove this, and have only been able to verify this
computationally for d = 3. For future reference, note that

(4.3)

w(XO) — ((d— l)dd_z)dg, d)(xO) — g1n<(d_1)d_1>

412

One approach to finding the maximum of ¢ is to mimic the proof of Lemma 3.1. The
function ¢ can be written as the sum over i = 1,...,g of functions ¢;, where the sets of
variables appearing in different ¢; are disjoint. For convenience we drop the index i and
rename all variables corresponding to vertex i as X, = Xies, and let 6, 1= oje, 7o = Tie,
Ve = Vie. Then

di(x) = 2Z{aelno—e+relnrg Vel e — Xee IN X0 — 22 xeflnxef}
e3i i, f+#e

Since G is d-regular and ¢; depends only on the degree of i in G, all the functions ¢; are
equivalent under relabelling of variables.
Now define the domain

Xp = {(xef)e,f31 € [0, 1] erf = 1}

e,f3i

It suffices to prove that ¢; has a unique maximum on Xj, attained at the point
(1/d?%,...,1/d*). Applying the Lagrange multiplier method to X,, we see that at an
interior maximum point, all partial derivatives of ¢; must be equal. This gives d> — 1
(nonlinear) equations (together with Ze’f X.; = 1) to be solved for d? variables. We tried
to solve this system using Maple. Unfortunately, Maple seems unable to handle the
computations for d > 4. Hence we only have the desired result for d = 3.
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Lemma 4.1. If G is 3-regular then the function ¢ defined by (4.2) has a unique maximum
on K N'W attained at the point (1/9,...,1/9) € R%.

Proof. As explained above, we consider only the function ¢; for a fixed vertex i. Using
Maple, we solved for points in {(Xer)es : D, Xef = 1} where all the 9 partial derivatives
of ¢; are equal. Exactly four solutions were found, of which only one lies in [0, 1]°, giving
the point x° = (1/9,...,1/9) € Zg. (The other three solutions each contain both positive
and negative entries.) We have ¢(x°) = In(4/3).

It remains to consider the boundary, where one or several x,; = 0. If x,, = 0 and y; > 0

il

for f e, then ﬁieeqb(x) = 400, and thus x is not a maximum point. Similarly, x cannot
be a maximum point if x,; = 0, where e # f and at most one of ., 1y and y; (where
f' is the third index) vanishes. It is easily seen that the only remaining cases are when
the only non-zero variables (after relabelling the indices as 1,2,3 in some order) are
{x12, %21}, {X11, %22, X33} or {xi1,X12,X13}, or a subset of one of these. In the first case we
have ¢ = 0. In the two latter cases, ¢; equals, after relabelling, %qﬁv defined in (3.6) (at the
corresponding step of the first moment calculation), and thus the maximum over one of
these sets is %ln(4/ 3) < ¢(xp). (We omit the details.) Hence, there is no global maximum
on the boundary.

Consequently, x° is the unique maximum point of ¢; on Zo. Arguing as in Lemma 3.1

completes the proof. L]
Let V = W — z be the subspace spanned by £ e,

V= {(xief) eV Zx,»ef =0 forie [g]}.

e.f3i

Theorem 4.2. Suppose that G is d-regular, where d > 3. If the function ¢ defined in (4.2)
has a unique maximum on K "W at x° = (1/d>,...,1/d?), then

d—2\d. d—1 n
E(X2) ~ ((‘fz)_ DATEE o ppy/e/ssdea-e 2 ((d —dz )g ,
det (L) det(—H|y)'/? d

where r is the rank of Eg) and H = D*¢(x°) is the Hessian of ¢ at x°, provided the
determinant in the denominator is non-zero. In particular, this expression holds for all 3-
regular connected graphs G.

Proof. This is now an immediate consequence of Theorem 2.3, using (4.1) and (4.3). The
final statement follows from Lemma 4.1. L]

It remains to calculate the determinants of E(g) and —H|y, and the rank r. In the
non-bipartite case, part of this is covered by the next lemma.

Lemma 4.3. Suppose that G is non-bipartite and d-regular, where d > 3. Recall that h
denotes the number of edges in G, so h = dg/2. Then the lattice ﬁg) has rank d*g — (g +
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3h) = d>g — g — 3dg/2 and determinant
det (L) = 23M273/222(4(d — 2))/>78/% det(dl + A) det(d(2d — 3)I — A)'/2

g
= 2R — )2 T [d + wd2d = 3) = )2
i=1

where oy, ... 0, are the eigenvalues of A.

Proof. The linear space V' spanned by L‘g) is the subspace of Re orthogonal to the
following g + 3h vectors:

e one vector x% for every j € V(G), with x% =1[i=j],

e one vector x'* for every ¢ € E(G), with xf; = d;1[e = f =¢],
le

e one vector x* for every ¢ € E(G), with x3%, = d;1[e = ¢ # f],
e one vector x* for every ¢ € E(G), with x; = d;1[e # ¢ = f].

Relabel these vectors (in this order) as xi,...,Xo434. Then their Gram matrix I' can be
written in block form, with blocks of dimensions g, h, h, h:

a2 A @d—-DA (d—1)4
AT 21 0 0
(d—1DAT 0 2d—1I ATA-2I
(d—1DAT 0 ATA—21 2(d—1I

I =

In order to evaluate the Gram determinant det(I'), we may make an orthogonal change
of basis in the first component RE, and another orthogonal change of basis in each of
the components R" (we choose the same change in all three). It is well known that we
can make such changes of basis such that any given g x h matrix B obtains the form
of a diagonal g x g matrix Dy with h — g additional columns of Os; this is known as the
singular value decomposition of B, and is easily seen by choosing an orthonormal basis

Z1,...,zx in R" such that BT B is diagonal, and then choosing an orthonormal basis in R¢
containing the vectors Bz;/||Bz;||, for all i such that Bz; + 0. We choose such bases for
B = A. The diagonal entries sy,...,s, of Ds can be assumed to be non-negative, and they

are identified by the fact that the eigenvalues of BBT = AAT are {s?}. By (2.2), we thus
have

s =d—o (4.4)
Hence, with D = (D, 0) a g x h matrix with non-zero elements given by (4.4),

d’1 Dy (d—1)Dy  (d—1)D
DI 21 0 0
(d—1)DI 0 2d—-1)I DID,—2I|

(d—1)DI 0 DIDy—21 2(d—1)I

detT" = (4.5)
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Since Dy is a diagonal matrix, we can reorder the rows and columns in (4.5) so that we
obtain a block diagonal matrix with g 4 x 4 blocks

&? i (d=1)si (d—1)s

%2}

S 2 0 0
L= d—1)s 0 2d—1) =2 (46)
d—1s O 57 —2 2(d—1)
and h — g identical 3 x 3 blocks
2 0 0
I'y:=(0 2d-—1) =2 . 4.7)
0 -2 2(d—1)
Hence, by straightforward calculations,
g
det(I") = det(I'g)" 2 [] det(I';)
i=1
g
= (8d(d —2))" ¢ [](2d — s7)? (2c7l2 —4d + s,z) (4.8)
i=1

— (8d(d — 2))"% [T(d + o)2(d(2d — 3) — ).
i=1

Since G is non-bipartite, —d < o; < d for every i, and thus (4.8) shows that det(I") # 0.
Hence, the vectors xi,...,Xg43s, or in different notation

(X% 1 je V(G)} U {x" x* x* . ¢ € E(G)}, (4.9)

are linearly independent, so they form a basis in V'*.

We apply Lemma 6.2, with N = d?g, m = g + 3h = g + 3dg/2, and using the vectors
X1+ Xgp3n in (4.9). Then L&) = £+ Hence, rank(L) = N —m = d®g — g — 3h. We have
det(Ly) = det(I")'/?> by Lemma 2.1. Finally, we claim that there are 4 solutions (mod 1) to
(6.1):if we let ty; denote the coefficient of x% and so on, the solutions have toj = to for all j
and ty, = 11, b, = 1o, t3, = t3 for all &, where (fo, 11,12, 13) = (0,0,0,0), (0,0, 3, 1), (1,1, 1,0),
or (%,%,O,%). (To prove this, first consider the equations in (6.1) which correspond to
variables x;,, and use the existence of an odd cycle. This gives the possible values of
to and t;. The rest of the proof follows by considering the equations in (6.1) which
correspond to variables x;.; for a given vertex i, with e # f.)

Hence ¢ = 4, and Lemma 6.2 yields

det (£5) = det(£*) = det(I")!/2/4.
The result follows by (4.8). L]

Example 5. For G =K,4, we have d=3, g=4, h=6, and A has the eigenvalues
3,—1,—1,—1. Hence Lemma 4.3 yields det(£{') = 27352532,

We believe that there is a similar result for regular bipartite graphs, but we have not
explored it. (Presumably, the rank is then d’g — g — 3h + 2.)
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Unfortunately, we have not been able to find a similar general formula for det(—H|y)
in Theorem 4.2. However, this quantity can be calculated directly for a particular graph
G, once a basis for £ is known.

Example 6. When G = K4, using Maple we found a basis {zy,...,z14} of ¥ and then
calculated det(—H|y) = 2722 3% 571 11° using (2.5). Hence by Theorem 4.2 and Example 5,

4 4n
E(Xg) ~2'937%257 111732 <3> :

Example 7. When G = K3 is the multigraph with two vertices and three parallel edges,
Maple computations confirmed that £(Gz) has rank 9 and gave

det (£7) =2*3*2 and det(—H|y) = 27103152
Hence by Theorem 4.2,

4 2n
E(X§) ~ 23725 <3) :

5. Short cycles in random lifts

Let Z; denote the number of cycles of length k in L,(G), for k > 2. (Note that Z, is zero
unless there are multiple edges in G.) To apply the small subgraph conditioning method
to Xg, we must understand the distribution of short cycles in random lifts, as well as their
interaction with perfect matchings. This will enable us to verify conditions (A1)-(A3) of
[11, Theorem 9.12], with their Y, given by our X (the index n is suppressed), and with
their Xy, given by our Zj.

To compute the limiting distributions in (A1) and (A2) of [11, Theorem 9.12], we will
use the method of moments. Moreover, for (A2) we will be guided by [11, Lemma 9.17
and Remark 9.18], which tell us that we need only compute asymptotically

E(X6(Z2)), - (Zwm)j,)/ E Xg,

for integer constants m > 0 and j,..., j, > 0. Here (Z); denotes the falling factorial
Z(Z—-1)-(Z—j+1).

Let k be a fixed positive integer. It is more convenient to count rooted oriented k-
cycles, which introduces a factor of 2k into the calculations. A k-cycle in L,(G) can
then be thought of as a lift of a non-backtracking closed k-walk in G, which is a walk
ipeiter - - - ix—iex in G such that e; is an edge of G with endpoints {ij,i;;1} and e; # e;_i,
for 1 < j <k. (Here and throughout this section, arithmetic on indices in k-walks is
performed modulo k.) Note that if G is simple then any three consecutive vertices on
the walk must all be distinct. These walks arise in various contexts (see, for example,
[1, 5, 10]) and have also been called irreducible [9] and non-backscattering [13]. Denote
by wi the number of non-backtracking closed k-walks in G, for k > 2.

The following lemma shows that condition (A1) of [11, Theorem 9.12] holds.
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Lemma 5.1. Let J; = wi/(2k) for all k > 2, where wy is the number of non-backtracking
closed k-walks in G. Then Zj ~ Po(Ay), jointly for all k > 2.

Proof. Fix a non-backtracking closed k-walk C = ipeqi; - ir_1ex in G. The (oriented)
k-cycle C' = fif2--- fi in L,(G) is a lift of C if f; € F,, for j = 1,..., k. Hence the number
of possible lifts C’ of C is (1 + o(1))n¥, and each will appear in L,(G) with probability
(1 + o(1))n~*. It follows that

/ Wi
EZ, = P(C’ < Ly(G)) = — 1).
= 2D HC S LG = gy ol
Similar arguments hold for higher joint factorial moments, completing the proof. L]

For the remainder of this section we restrict our attention to d-regular multigraphs with
d > 3. Next we verify condition (A2) of [11, Theorem 9.12] using the approach suggested
in [11, Remark 9.18].

Lemma 5.2. Suppose that G is d-regular with d > 3, and for k > 2, let

= )

Then, for any integer m > 2 and non-negative integers ja, ..., jm,

E(X6(Z2)j, - (Zm); L.
(Xo ( ?E)J;(G ( ’")/’”)—>BM{' as n — oo.

Proof. For ease of notation, throughout this proof we write P(M) :=P(M < L,(G)),
P(M,C') :=P(M < L,(G),C’" = L,(G)), and so on. First we estimate E(Xg Z;). We write
B(XoZ) =) > PM,C)=>Y PM)> > PC'M),

M C C M c
where the sums extend over all possible perfect matchings M in L,(G), all non-backtracking
closed k-walks C in G, and all their possible lifts C’, respectively.
To calculate the inner double sum, we fix a perfect matching M, and condition on its

presence in L,(G). Let C = ipeqiy - - ix_1ex be a given non-backtracking closed k-walk in
G. For a lift C" of C with edges fif>- - f, let

1 if f; € My,
5,(0):{ it T for 1< j <k
0 otherwise,

To estimate the expected number of lifts of C given Mj, we break the sum over all C’
according to the vector &(C’'):

STPC M= Y > P(C[Mo).
=

uel01jk  C:E(C)=u
Let /., be the number of edges of My in the fibre F,, and say that M is good if

|t —n/d| < n*3  for every e.
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We may assume that M, is good, since the calculations for the expectation in Section 3
show that the contribution from other matchings is negligible. (Specifically, this follows
from the proof of Lemma 6.3: in particular the fact that S, = o(1), S3 = o(1), using
notation from that proof.)

Hence, for a given u = (uy,uy, ..., ux) € {0,1}%,

1 k=37 uj
P(C'|Mo) ~ (n_n/d> .

Let too(u) and to;(u) be the numbers of substrings 00 and 01 in u, respectively. Next we
prove that the number of lifts C' = f1--- fi of C such that £(C’) = u is asymptotically

equal to
n too(u) n to1(u)
03 (@)

Indeed, let V;, be the set of endpoints in V; of the 7, edges in MyN F,, for i incident to
e € E(G). If, say, u;y = u, = 0, which means that neither f; nor f, are in My, then we can
choose the end of f; in Vj, from Vi \ (Vie, U Vi), and |V \ (Vije, U Vie,)| ~n—2n/d
since we assume that M, is good. Similarly, if uy =0 and u; = 1, which means that
f1 € My but f, € My, then we have to choose the end of f; from V;,,, a set of size ~ n/d.
Note also that if u; = 1 then we must have u, = 0, and if we have already selected the
end w of fj in Vj,, then the other end of f; is completely determined as the partner of w
in M().
Multiplying these two expressions together yields that

Z P(C,|M0) = bu1u2 e buk,lukbu/(ul + 0(1)3
C':E(C)=u

where by, bo1, b1, b11 form the matrix

=2 1
g |1 @
1 0
Note that B has eigenvalues 1 and —1/(d — 1). Summing over all u = (uy,...,u), we find

that the conditional expected number of lifts of C is

k
> P(C'|Mo) = Tr(B¥) + o(1) = 1 + ([_11) +o(1).
C/

Hence the expected number of k-cycles in L,(G), conditioned on the existence of a given
good perfect matching M, is asymptotically equal to

Znemsn- (o ()3~ 0+ (25

c

Finally,

E(Xg Zi) ~ ) P(M)u = i E Xo.
M
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All the above calculations work similarly for higher factorial moments and yield the
desired result. Ul

Denote a directed edge of G by (e, i, j), where e € E(G) is incident to i, j € V(G) and
i # j; this denotes e directed from i to j. Now let R be the dg x dg matrix with rows and
columns indexed by directed edges of G, and

1 ifp=jand f #e,
Retl)(f!"]) 0 otherwise

(Here R is the adjacency matrix of a version of the directed line graph of G, where U-turns
are forbidden.) Then

= Tr(R*) = 0f + -~ + 0}, (5.1)
where 01,...,04, are the eigenvalues of R. Note that d —1 is an eigenvalue of R with
eigenvector (1,1,...,1)T; since R has non-negative entries, this is the eigenvalue with

largest modulus. Now for k > 2, the quantity u; defined in Lemma 5.2 equals

k
e = (14 )k, where o = (d—l) > 1.

Therefore the quantity >, /lkélf in condition (A3) of [11, Theorem 9.12] is

k
ZM" sz d—1) sz2< —1)2)
1 0,
_2;1n<1—(d_1)2>,

which is finite as required. Furthermore,

dg —1/2
exp (Z Aka,f) = (d—1)% (H((d —1)* — 9,))
k t=1

—-1/2

= (d — 1) det((d —1)’I —R) (5.2)

In order to assist with the verification of condition (A4) from from [11, Theorem 9.12],
we will rewrite this expression in terms of the adjacency matrix 4 of G. The following
result was proved by Friedman [9].

Lemma 5.3 ([9], Theorem 10.3). Suppose that G is d-regular with d > 3 and let oy,..., o,
be the eigenvalues of the adjacency matrix of G. For i =1,...,g, let B and B denote the
roots of the quadratic x* —a;x +d — 1 = 0. That is,

Br = du+ T —d— 1. = du—flE— -1

Then the eigenvalues of R are B, B for i=1,...,g, together with 1 and —1, the latter
two repeated g(d — 2)/2 times each. Hence, for k > 2, the number of non-backtracking closed
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k-walks in G is given by

we = 3g(d—2)(1+(=1)) + Z(ﬁ+ Yo+ (B)).

i=1

Note that there may be repetitions among f;", B, and some of these may coincide with
+1. Hence the multiplicities of these eigenvalues may not be exactly 1 or g(d — 2)/2: see
Example 8 below.

We now use Lemma 5.3 to rewrite (5.2) in terms of the eigenvalues of the adjacency
matrix of G.

Corollary 5.4. Suppose that G is d-regular, with d > 3. The expression in (5.2) can be
written as

exp (Z )443,%)
k
= (d —1)%782((d — 1)* — 1)"=2¢/* det((d — 1)* + 1) — (d —1)4)""/2

1/2

g
= (d—1)% X (d— 1) = 1) A TT(d =1 +1—(d = D)oy) ™

Proof. It follows from Lemma 5.3 that the characteristic polynomial of R is given

by
det(Al — R H(;—e )<“g/2(ﬂ+1<“8/21'[1 B — B7)
i=1
= (72 —1)4-2e/2 H(/l2 —wl+d—1)
i=1
= (22— 1)28/2 det((2 +d — 1)I — LA).
The proof is completed by substituting this into (5.2) with 2 = (d — 1) U]

Example 8. When G =K, the eigenvalues of 4 are o; =3,0p =03 =04 = —1. By
Lemma 5.3, the eigenvalues of R are 2, 1 (three times), —1 (twice), and %(—1 + \ﬁi)
(three times each), so the number of non-backtracking closed k-walks in K4 is

1 .\ k 11— .\ k
wk=2"+3+2(—1)"+3(’;*ﬁ’> +3(2*ﬁ’> .

Furthermore, by Corollary 5.4,

exp <Z M,f) = 2191571 det(9I —24)71/% = 2193732571 11732,
k
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Example 9. The multigraph with two vertices connected by d parallel edges has adjacency

matrix
0 d
A—(d O).

We have ﬁf—r, ﬁ;—r = +(d — 1), £1 and by Lemma 5.3, the matrix R has eigenvalues +(d — 1)
and +1, the latter with multiplicities d — 1. Hence wy = 2(d — 1) +2(d — 1) if k > 2 is
even, and w, = 0 if k is odd. Corollary 5.4 yields, after some algebra,

exp (Z ;,ké,f) = (d— 127 (d = 2) P dP = 2d 4 22,
X
For example, when d = 3 this is 2°373/25~!, while for d = 4 it is 2-1%/237573/2,

To complete this section, we prove a concentration result for the number of perfect
matchings in L,(G) when G = K4 and when G is the multigraph K3 with 2 vertices and 3
parallel edges. We conjecture that the analogous result is true for any connected d-regular
multigraph G with no loops, where d > 3, with 6y = —(1/(d — 1))~.

Corollary 5.5. For k > 3, let wy be the number of non-backtracking closed walks of length k
in Ky, and define 2 = wy/2k. Further, let Y}, be a Poisson random variable with expectation
A, with {Y; )} independent, and define & = (—1/2)F. Then, with G = Ky,

Xe d -
G . A\Yi ,—Aid;
= G—>W.—||(1+5,) o0,

i=3

Proof. Let X = Xk,. It follows from Examples 3 and 6 that
E(X?)
(EX)

By comparing with Example 8, we find that (A4) of [11, Theorem 9.12] is satisfied: that
18,

~ 210 3—3/2 5—1 11—3/2.

XZ
&EET)Z — exp (Z l;ﬁ,f) as n — oo.
k

The other conditions of [11, Theorem 9.12] hold, as follows from Lemmas 5.1 and 5.2.
Applying [11, Theorem 9.12] completes the proof. ]

The same argument applies for the multigraph with two vertices and three parallel
edges, this time using Examples 4, 7 and 9, leading to the following.

Corollary 5.6. Recall that K3 denotes the multigraph with two vertices and three parallel
edges. For k > 2, let wy be the number of non-backtracking closed walks of length k, and
define A = wy/2k. Further, let Yy be a Poisson random variable with expectation A, with
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{Yy )k independent, and define & = (—1/2)K. Then, with G = K3,

Xg d -
- \Y2i ,—/2i02i
Px W= [T(1+ 02 e,

i=1

It is immediate that the limiting distribution W satisfies W > 0 (with probability 1) in
both Corollary 5.5 and Corollary 5.6. Hence L,(G) a.a.s. has a perfect matching, for both
G = K4 and G = K3. This also follows from [12].

6. Summation by Laplace’s method

In this section we prove our main approximation tool, Theorem 2.3, which performs a
summation over lattice points. We will require a little more theory about lattices. The
following surprising duality was proved by McMullen [14]. (See also [19].)

Lemma 6.1. Let V be a subspace of RN and let V* be its orthogonal complement. Let
L and L' be the lattices V NZN and V- NZN, and assume that the rank of L equals the
dimension of V (i.e., that L spans V). Then L£* has rank dim(V+) = N — dim(V) and

det(£1) = det(L).

For our purposes we need a simple extension.

Lemma 6.2. Let 0 <m < N. Let x1,...,Xx, be linearly independent vectors in ZN. Let V

be the subspace of RN spanned by x1,...,x,, and let V* be its orthogonal complement; thus
V= eRY :(y,x)=0 fori=1,...,m}.

Let £ and L be the lattices V NZN and V- NZN, and let Ly be the lattice spanned
by Xi,...,Xxn (ie., the set {> " nix; : n; € Z} of integer combinations). Then LY has rank
N —m and

det(£1) = det(L) = det(Lo)/q,

where q is the order of the finite group L/Ly. Explicitly, q is the number of solutions
(t1,...,ty) in (R/Z)" (or (Q/Z)") of the system

> xiti=0 (mod 1), j=1,...N, (6.1)
where x; = (xij)ﬁv:l fori=1,...,m

Proof. Since rank(£) = m = dim(V'), we can apply Lemma 6.1 and conclude that
rank(£Y) =N —m and det(£!) = det(L).

Next, Lo = VNZN = L£; moreover, Lo and £ both span V and thus have the same
rank. Hence Lemma 2.2 shows that £/L is finite and det(£) = det(Ly)/q. Note further
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that L= V = {3, tix; : t; € R} and thus
g =1L/L) = H(n) 0.1 Yt e ,c}‘

Furthermore,

Ztixi €L — Ztixi ez — injt,» =0 (mod1l) forj=1,...,J,
i i i
and the characterization of ¢ follows. ]
The proof of Theorem 2.3 involves reduction to a special case, which we prove first.

Lemma 6.3. Suppose the following.
(1) £L < R" is a lattice with full rank r.
(i) K = R" is a compact convex set with non-empty interior K°.
(iii) ¢ : K > R is a continuous function with a unique maximum at some interior point
Xo € K°.
(iv) ¢ is twice continuously differentiable in a neighbourhood of xo and the Hessian H :=
D?¢(xo) is strictly negative definite.
(v)y : Ki > R is a continuous function on some neighbourhood Ky = K of x¢ with
y(xo) > 0.
(vi) For each positive integer n there is a vector £, € R'.
(vii) For each positive integer n there is a positive real number b, and a function a, : (L +
{n) NnK — R such that, as n — oo,

ay(¢) = O (b,e"?/mrotm), /e (L+1,)NnK, (6.2)
and

an(¢) = by (p(£/n) + o(1)) "/, e (L+1y)NnKy, (6.3)

uniformly for ¢ in the indicated sets.

Then, as n — o0,

r/2
Z an(/) ~ (27'[) lp(xO) — bnn"/ze”‘f’(x"), (64)
le(LA-Ln)nmK det(L) det(—H)

Proof. We begin with a few simplifications. We may obviously assume that b, = 1.
Furthermore, by subtracting ¢(xo) from ¢, and dividing a,(¢) by ") we may suppose
that ¢(x¢) = 0.

Since x( is an interior maximum point, the gradient D¢(x¢) vanishes, and a Taylor
expansion at xo shows that, using (iv), as |x — xo| — 0,

d(x) = 1(x — x0, D2(x0)(x — x0)) + o(|x — xo|*) (6.5)
< —cp]x — xo)* + o(]x — xo/*)
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for some positive constant ¢;. Consequently, there exists 6 > 0 such that the neighbour-
hood {x :|x — xo| < 6} is contained in K; and

P(x) < —calx —xol’,  [x—xo| <9 (6.6)

for some positive constant ¢;. We divide the sum in (6.4) into three parts:

S| = Z R Sy = Z , S3 = Z

|£/n—xq|<n—1/3 13|t /n—xo|<d [£/n—x0]24

In the sum S; we use (6.3) and (6.6); thus each term is

1/3

(/) = 0"y = 0(e="").

Since the number of terms is O(n"), we obtain S, = o(1).
Similarly, by compactness, if |[x — xo| > 0, then ¢(x) < —c3 for some positive constant
c3. Consequently, for large n, (6.2) shows that each term in S; is

an(/) = O(en¢(//n)+c3n/2) _ O(e—C3n/2).

Again, the number of terms is O(n") and we obtain S3 = o(1).
We convert the sum S; into an integral by picking a unit cell U of the lattice £ and
defining a,(y) :==a,(/) forye U+, € L+ {,. Let Q, := U\//n—xo\<n*1/3(U + /), and let

={z :nxo+ \/ﬁz € 0,}. Then

Sy = det(£)™! / an(y)dy = det(£)"'n"/? [ an(nxo + /nz) dz. (6.7)
n Qn
Note that Q, is roughly a ball of radius n*? centred at nx, and @,, is roughly a ball of
radius n'/® centred at 0.

If y € Q,, then |y/n — xo| < n~'/3 4+ O(n~"'). Since the gradient D¢ (xo) = 0, (iv) implies
that, for x € Q,,/n,

ID(x)| = O(|x — xo|) = O(n™"7). (6.8)
If y € U4/ < Q,, then |y/n—//n| = O(1/n), and (6.8) implies
np(y/n) —ng(//n) = 0 (=" *n~) = 0(n”'3),
and thus (6.3) implies, uniformly for y € Q,,
an(y) = an(¢) = (w(y/n) + o(1))e" /M. (6.9)

For every fixed z € R’, this and the Taylor expansion (6.5) show that, as n — oo, using
the continuity of y,

ay(nxo + \/ﬁz) — w(xo)g%@DZ(/)(Xo)Z)'
Moreover, (6.6) and (6.9) provide a uniform bound, for all z € R’,

|an(nxo + \/nz)15 (2)] < Cre 2,



636

637
638

639
640
641
642
643
644
645
646

647
648
649
650

651

652
653
654
655

656

657
658
659
660
661
662
663
664
665
666
667
668
669
670

26 C. Greenhill, S. Janson and A. Rucinski

Further, lén(z) — 1 for every z. Hence, dominated convergence shows that

/N ap(nxo + \/ﬁz) dz — / w(xo)e%@,m(ﬁ(xo)ﬂ dz
Rl’

= p(x0)(2m)"? det(=D*$(x0)) .
The result follows from this and (6.7), together with the estimates S, = o(1) and S3 = o(1)
above. L]

Proof of Theorem 2.3.  First, replacing K by K — w, a,(/) by a,(/) := a,(£ + nw), £, by
/, —nw, and translating ¢ and y, we reduce to the case w =0 and thus W =V and
lneV.

Choose a lattice basis {z1,...,2,} of £. Consider the mapping T : R" — V = RN given
by (y1,..-,yr) — >_i_; yizi, which thus maps Z" onto £. We apply Lemma 6.3 to £ = 7',
K' :==TYK),¢poT,poT,/l, =T (), and a,(T(k)), k € (L' + /) " nK'. The Hessian
D?(¢p o T)(T'xo) equals (H(z,—,zj));j and its negative has determinant, by (2.5) and
(23),

=1’

det(—H(z;,z ,‘))j,j=1 = det(—H|y) det((z;, zj))j ;—; = det(—H|y) det(£)*. (6.10)
Hence, (2.7) follows from Lemma 6.3. Note that the Hessian D?*(¢ o T)(T 'xo) is always
negative semi-definite, because xo is a maximum point. Hence, it is negative definite
unless its determinant is zero, which is ruled out by (6.10) and the assumption that
det(—H|y) # 0. L]
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