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Let G be a fixed connected multigraph with no loops. A random n-lift of G is obtained12
by replacing each vertex of G by a set of n vertices (where these sets are pairwise disjoint)13
and replacing each edge by a randomly chosen perfect matching between the n-sets14
corresponding to the endpoints of the edge. Let XG be the number of perfect matchings15
in a random lift of G. We study the distribution of XG in the limit as n tends to infinity,16
using the small subgraph conditioning method.17

We present several results including an asymptotic formula for the expectation of XG18
when G is d-regular, d � 3. The interaction of perfect matchings with short cycles in19
random lifts of regular multigraphs is also analysed. Partial calculations are performed for20
the second moment of XG, with full details given for two example multigraphs, including21
the complete graph K4.22

To assist in our calculations we provide a theorem for estimating a summation over23
multiple dimensions using Laplace’s method. This result is phrased as a summation over24
lattice points, and may prove useful in future applications.25

1. Introduction26

Throughout, let G be a fixed connected multigraph with g vertices and no loops. For27

simplicity we assume that V (G) = [g] := {1, . . . , g}. A random n-lift of G is a random28

graph on the vertex set V1 ∪ V2 ∪ · · · ∪ Vg , where each Vi is a set of n vertices and these29

sets are pairwise disjoint, obtained by placing a uniformly chosen random perfect matching

Q1

30

between Vi and Vj , independently for each edge e = ij of G. Denote the resulting random31

† Supported by grant N201 036 32/2546.
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graph by Ln(G). The perfect matching corresponding to the edge e of G is called the fibre32

corresponding to e, which we denote by Fe. Note that the degree of v ∈ Vi in Ln(G) is33

equal to the degree dG(i) of vertex i in G. In particular, if G is d-regular, then so is Ln(G).34

We are interested in asymptotics as n tends to infinity.35

This model of sparse random graphs was introduced and studied in a series of papers36

by Amit, Linial, Matoušek and Rozenman [2, 3, 4, 12]. Linial and Rozenman [12] studied37

the existence of a perfect matching in Ln(G) and described a large class of graphs G for38

which Ln(G) a.a.s. contains a perfect matching (for n even, at least). This class contains all39

regular graphs and, in turn, is contained in the class of graphs having a fractional perfect40

matching (see Section 3 for a definition). Observe that if G has a perfect matching then41

every lift of G has at least one perfect matching.42

In this paper we study the number of perfect matchings in Ln(G) in the limit as n43

tends to infinity, where G is a graph with a fractional perfect matching. To do this we44

use the small subgraph conditioning method , which provides a concentration result based45

on the second moment method conditioned on the number of small cycles. For a concise46

description of the method, see [11, Theorems 9.12 and 9.13].47

Let XG be the number of perfect matchings in Ln(G). To apply the small subgraph48

conditioning method, asymptotic expressions for EXG and E(X2
G) must be found. Then49

the limit of the ratio E(X2
G)/(EXG)2 is compared with a quantity which depends upon the50

interaction of perfect matchings and short cycles in Ln(G).51

In Sections 3 and 4 we write the first and second moments of XG as multiple sums of52

some explicit terms, and then estimate the sums by Laplace’s method. This is a standard53

method for similar moment estimates, and in particular, it has been used in several papers54

on random regular graphs. (See, for example, [11, Chapter 9] and the references given55

there.) However, in the present paper, each summation is over an index set of rather56

high dimension with a number of side conditions on the indices, while in many previous57

applications the summations are only over one or two variables. To assist with these58

calculations, we present a general theorem (Theorem 2.3) that encapsulates Laplace’s59

method for a general situation, with sums over a lattice in a subspace of RN . We do this60

both because we think that it clarifies the argument in the present work, and because61

we hope that it might be useful in future applications. The necessary terminology and62

notation is introduced in Section 2, where Theorem 2.3 is stated. The proof of Theorem 2.363

can be found in Section 6.64

Using this machinery we prove an asymptotic formula for EXG for any connected65

regular multigraph G with degree at least three (see Theorem 3.3). However, two difficulties66

(one algebraic and one analytic) have prevented us from obtaining an asymptotic formula67

for E(X2
G) in the same generality, though we have partial results in Theorem 4.268

and Lemma 4.3. We illustrate these results by calculating E(X2
G) for two multigraphs:69

specifically, for the complete graph K4 and for the multigraph consisting of two vertices70

and three parallel edges, which we denote by K3
2 . These calculations were performed with71

the aid of Maple. (A file containing the Maple commands is available from [20].)72

In Section 5 we prove the necessary results relating to short cycles in random lifts73

(Lemmas 5.1, 5.2 and Corollary 5.4). As corollaries, using [11, Theorem 9.12] we obtain a74

concentration result for XG in our two illustrative examples (see Corollaries 5.5 and 5.6).75
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One of the most interesting questions on random lifts is the problem of existence of a76

Hamilton cycle. There is a conjecture (attributed to Linial) that a random lift of K4 is77

a.a.s. Hamiltonian. Indeed, we believe that a.a.s. Ln(G) is Hamiltonian for all connected78

d-regular loop-free multigraphs G with d � 3. (This is known to be true when G is a79

multigraph with exactly two vertices and at least three edges: see Remark 1 below.)80

Burgin, Chebolu, Cooper and Frieze [6] showed that a.a.s. Ln(Kg) is Hamiltonian when g81

is large enough (see also [7] for the directed case). The arguments in [6] are combinatorial82

and utilize the celebrated idea of Pósa. For small g, we feel that the small subgraph83

conditioning method may be a fruitful line of attack, as it has been very successful for84

studying Hamilton cycles in random regular graphs (Robinson and Wormald [17, 18]; see85

also [11, Chapter 9]). This remains an open problem.86

Remark 1. We allow the multigraph G to have multiple edges. The simplest case is when87

G consists of only two vertices, with d parallel edges between them. The random lift Ln(G)88

is then a random bipartite (multi)graph obtained by taking the union of d independent89

random matchings between two sets of n vertices each. Such sums have been studied in90

[15], where they were shown to be contiguous to random bipartite d-regular (multi)graphs.91

The latter, in turn, is known to be a.a.s. Hamiltonian (see [16] for a standard, second92

moment method proof). Hence, for this small multigraph G with d � 3, the random lift93

Ln(G) is a.a.s. Hamiltonian too.94

Remark 2. Random lifts of multigraphs with loops can also be formed. As in [2], the95

fibre corresponding to a loop is given by the n edges iσ(i) for a random permutation σ96

of [n]. This is a random 2-regular (multi)graph, denoted by P(n) in [11, Remark 9.45].97

While we do not allow loops in our current work, for several reasons, we believe that the98

results here can be extended to multigraphs with loops. A simple and interesting case is99

when G consists of a single vertex with d/2 loops (d even). Then Ln(G) consists of the sum100

(union) of d/2 independent copies of P(n). Such sums have been shown to be contiguous101

to random d-regular (multi)graphs in [8].102

2. Notation, terminology and a summation theorem103

As mentioned above, G denotes a fixed connected multigraph with g vertices and no104

loops. For simplicity we assume that V (G) = [g] := {1, . . . , g}. We denote the number of105

edges in G by h. (Often we assume G to be d-regular, and then h = dg/2.) Let A = AG106

be the g × g adjacency matrix of G and let Â = ÂG be the incidence matrix of G, with g107

rows and h columns. Thus108

ÂÂT = A+ DG, (2.1)

where DG is the diagonal matrix with entries dG(i), i ∈ V (G). Denote the eigenvalues of A109

by α1, . . . , αg .110

In Section 4 we also need a directed incidence matrix for G. Give each edge in G an111

(arbitrary) direction, and let �AG be the corresponding directed incidence matrix. In other112

words, �AG is the g × h matrix obtained from Â by changing the sign of one of the two 1s113
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in each column. Then114

�AG�A
T
G = DG − A. (2.2)

Our version of Laplace’s method (Theorem 2.3) involves lattices. A lattice is a discrete115

subgroup of RN . (Discrete means that the intersection with any bounded set in RN is116

finite.) It is well known that every lattice L is isomorphic (as a group) to Zr for some117

r with 0 � r � n. The integer r is called the rank of L and is denoted by rank(L). In118

other words, every lattice L has a basis , i.e., a sequence x1, . . . , xr of elements of L such119

that every element of L has a unique representation
∑r

i=1 nixi with ni ∈ Z. Furthermore,120

the basis elements x1, . . . , xr are linearly independent (over R); thus the rank equals the121

dimension of the linear subspace spanned by L.122

The basis is not unique (except in the trivial case r = 0); if Ξ = (ξij) is any r × r integer123

matrix such that the determinant det(Ξ) = ±1 (which is equivalent to the condition that124

both Ξ and Ξ−1 are integer matrices) and (xi)
r
1 is a basis of L, then yi =

∑
j ξijxj defines125

another basis y1, . . . , yr; conversely, given (xi)
r
1, every basis of L is obtained in this way by126

some such matrix Ξ.127

A unit cell of the lattice L is the set {
∑r

i=1 tixi : 0 � ti < 1} for some basis (xi)i of L. If128

L ⊂ RN has full rank N, and U is any unit cell of L, then {x+U}x∈L is a partition of RN .129

The unit cells of a lattice L all have the same r-dimensional volume (Hausdorff measure),130

where r = rank(L); this volume is the determinant (or covolume) of L, and is denoted by131

det(L).132

If (xi)
r
i=1 is a sequence of vectors in RN , the symmetric matrix (〈xi, xj〉)ri,j=1 of their133

inner products is called their Gram matrix. It is well known that x1, . . . , xr are linearly134

independent if and only if the Gram matrix is non-singular, i.e., if and only if the Gram135

determinant det(〈xi, xj〉)ri,j=1 �= 0.136

The following results are well known.137

Lemma 2.1. If (xi)
r
i=1 is a basis of a lattice L in RN , then138

det(〈xi, xj〉)ri,j=1 = det(L)2. (2.3)

Lemma 2.2. If L1 ⊆ L2 are two lattices of the same rank, then L2/L1 is a finite group of139

order det(L1)/ det(L2).140

The Hessian or second derivative D2φ(x0) of a function φ at a point x0 ∈ RN is an141

N ×N matrix; it is also naturally regarded as a bilinear form on RN . In general, if B142

is a bilinear form on RN , it corresponds to the matrix (B(ei, ej))
N
i,j=1, where (ei)

N
i=1 is the143

standard basis. We define the determinant det(B) as det(B(ei, ej))
N
i,j=1, and note that if144

z1, . . . , zN is any basis in RN , then145

det(B) =
det

(
B(zi, zj)

)N
i,j=1

det(〈zi, zj〉)Ni,j=1

. (2.4)

We are interested in the restriction to a subspace. If B is a bilinear form on RN and146

V ⊆ RN is a subspace, we let det(B|V ) denote the determinant of B regarded as a bilinear147
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form on V . By (2.4), this can be computed as148

det(B|V ) =
det

(
B(zi, zj)

)r
i,j=1

det(〈zi, zj〉)ri,j=1

. (2.5)

for any basis z1, . . . , zr of V .149

We now state our general theorem for performing summation over a lattice using150

Laplace’s method.151

Theorem 2.3. Suppose the following.152

(i) L ⊂ RN is a lattice with rank r � N.153

(ii) V ⊆ RN is the r-dimensional subspace spanned by L.154

(iii) W = V + w is an affine subspace parallel to V , for some w ∈ RN .155

(iv) K ⊂ RN is a compact convex set with non-empty interior K◦.156

(v) φ : K → R is a continuous function and the restriction of φ to K ∩W has a unique157

maximum at some point x0 ∈ K◦ ∩W .158

(vi) φ is twice continuously differentiable in a neighbourhood of x0 and H := D2φ(x0) is159

its Hessian at x0.160

(vii) ψ : K1 → R is a continuous function on some neighbourhood K1 ⊆ K of x0 with161

ψ(x0) > 0.162

(viii) For each positive integer n there is a vector �n ∈ RN with �n/n ∈ W .163

(ix) For each positive integer n there is a positive real number bn and a function an : (L +164

�n) ∩ nK → R such that, as n → ∞,165

an(�) = O
(
bne

nφ(�/n)+o(n)
)
, � ∈ (L + �n) ∩ nK, (2.6)

and166

an(�) = bn(ψ(�/n) + o(1))enφ(�/n), � ∈ (L + �n) ∩ nK1,

uniformly for � in the indicated sets.167

Then, provided det(−H |V ) �= 0, as n → ∞,168 ∑
�∈(L+�n)∩nK

an(�) ∼ (2π)r/2ψ(x0)

det(L) det(−H |V )1/2
bnn

r/2enφ(x0). (2.7)

We remark that Theorem 2.3 can be generalized to allow n to tend to infinity along any169

infinite subset I of the positive integers, with the same proof. (Then (viii) and (ix) need170

only hold for every n ∈ I .)171

3. Expected number of perfect matchings172

A fractional perfect matching of the multigraph G is a function f : E(G) → [0, 1] such that173 ∑
e�v

f(e) = 1 for all v ∈ V (G).
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Note that every d-regular multigraph has a trivial fractional perfect matching obtained174

by giving each edge weight 1/d. We often treat f as a vector (f(e))e∈E(G).175

First, note that if there is a perfect matching at all in a lift Ln(G) of G, then there176

exists a fractional perfect matching f of G such that nf(e) is an integer for each e. Indeed,177

suppose that M is a perfect matching of a lift of G. Let �e be the number of edges from178

the fibre Fe in M, for each edge e ∈ E(G). Then the function f : E(G) → [0, 1] defined by179

f(e) = �e/n is a fractional perfect matching of G. Conversely, suppose that there exists a180

fractional perfect matching z = (ze)e in G such that nze is an integer for each e. We may181

construct an n-lift of G that contains a perfect matching as follows. First take nze edges182

above each edge e ∈ E(G), with all their endpoints disjoint. This yields n endpoints above183

each vertex i ∈ G, so we have constructed the sets Vi, and a perfect matching. Extend184

this perfect matching to an n-lift by adding further edges between Vi and Vj for all edges185

e = ij. Consequently, Ln(G) has a perfect matching with positive probability if and only186

if there exists a fractional perfect matching z with nz integer-valued. From now on, for187

a given graph G we consider only those values of n for which this holds, since otherwise188

trivially XG = 0.189

Remark 3. It seems an interesting problem to characterize the set of such n for a given190

graph, but this is outside the scope of the present paper, and we note only the following191

examples. If G itself has a perfect matching then every n is allowed. On the other hand,192

if g is odd, then only even n are possible. If G is of odd order and Hamiltonian, then193

the set of allowed n is exactly the set of positive even integers. If G is d-regular, then194

(1/d, . . . , 1/d) is a fractional perfect matching, so every multiple of d is an allowed n (but195

there might be others too). The result by Linial and Rozenman [12] implies that for a196

large class of graphs defined there, every large even n is allowed. Note finally that if n1197

and n2 are allowed, then so is n1 + n2. Hence the set of allowed n is always infinite, unless198

it is empty, so it makes sense to talk about asymptotic results.199

Suppose that there exists a fractional perfect matching z = (ze)e in G with nz an200

integer vector. If a perfect matching in Ln(G) has �e edges in the fibre Fe over e, then201 ∑
e�v �e = n = n

∑
e�v ze for every e, so (�e)e − nz belongs to the lattice L(1)

G in RE(G) defined202

by203

L(1)
G :=

{
(νe)e ∈ ZE(G) :

∑
e�v

νe = 0 for every v ∈ V (G)

}
= {ν ∈ ZE(G) : Âν = 0}.

(The superscript 1 denotes the first moment.) Here, and elsewhere when convenient,204

we think of the vectors as column vectors although we write them as row vectors for205

typographical reasons. Conversely, if � = (�e)e is a vector such that �− nz ∈ L(1)
G , then �206

is an integer vector and
∑

e�v �e =
∑

e�v nze = n for every v.207

Given such an integer vector (�e)e ∈ L(1)
G + nz, let us compute the expected number of208

perfect matchings in Ln(G) with �e edges in the fibre Fe. Clearly this number is zero unless209
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0 � �e � n for all e. Then the endpoints of the edges in the matching may be chosen in210 ∏
v∈V (G)

n!∏
e�v �e!

= n!g
∏
e

(�e!)
−2

ways, and for each choice, there are �e!(n− �e)! possibilities for the fibre Fe, with211

probability 1/n! each. Hence, defining K = [0, 1]E(G) we have212

E(XG) =
∑

�∈(L(1)
G +nz)∩nK

an(�), (3.1)

where213

an(�) := n!g−h
∏
e

(n− �e)!

�e!
.

(Recall that h denotes the number of edges in G.)214

We wish to evaluate the sum (3.1) asymptotically by Laplace’s method: more precisely,215

by applying Theorem 2.3. We use Stirling’s formula in the following form, valid for all216

n � 0, where x ∨ y := max(x, y):217

ln(n!) = n ln n− n+ 1
2

ln(n ∨ 1) + 1
2

ln 2π + O(1/(n+ 1)). (3.2)

Let xe = �e/n for all e ∈ E(G). Applying (3.2) we obtain, uniformly for � ∈ (L(1)
G + nz) ∩218

nK ,219

ln(an(�)) = (g − h) ln(n!) +
∑
e∈E(G)

(
ln((n− �e)!) − ln(�e!)

)
= (g − h)

(
n(ln(n) − 1) + 1

2
ln(n) + 1

2
ln(2π) + O(1/n)

)
+

∑
e∈E(G)

(n− 2�e)(ln(n) − 1) + n
∑
e∈E(G)

((1 − xe) ln(1 − xe) − xe ln(xe))

+
1

2

∑
e∈E(G)

(ln((1 − xe) ∨ n−1) − ln(xe ∨ n−1)) +
∑
e∈E(G)

O

(
1

�e + 1
+

1

n− �e + 1

)
.

Since220 ∑
e∈E(G)

�e = 1
2

∑
v

∑
e�v

�e = 1
2

∑
v

n = 1
2
gn,

after cancellation, an(�) can be expressed as221

an(�) = bn ψ(�/n) exp(nφ(�/n))

(
1 + O

(
1

min �e + 1

)
+ O

(
1

n− max �e + 1

))
where, for x ∈ RE(G),222

bn := (2πn)(g−h)/2, (3.3)

φ(x) :=
∑
e

((1 − xe) ln(1 − xe) − xe ln(xe)), (3.4)

ψ(x) :=
∏
e

(
1 − xe

xe

)1/2

, (3.5)



8 C. Greenhill, S. Janson and A. Ruciński

except that if some xe or 1 − xe is 0, we replace it by 1/n in (3.5). This implies that an(�)223

satisfies condition (2.6) of Theorem 2.3 with the above bn, φ, and ψ. We will now check224

all the remaining assumptions of Theorem 2.3. Let225

W :=

{
x = (xe) ∈ RE(G) :

∑
e�v

xe = 1 for every v ∈ V (G)

}
= {x : Âx = (1, . . . , 1)}.

As is well known, and described in Section 6 in detail, the sum (3.1) is dominated by the226

terms where φ(�/n) is close to its maximum. In order to find the maximum, we restrict227

ourselves to regular multigraphs, where the result is simple. (The method applies to other228

graphs as well, provided one can find the maximum point(s) of φ.)229

Lemma 3.1. Suppose that G is d-regular, where d � 3. Then φ defined by (3.4) has a unique230

maximum on K ∩W={x ∈ K : Âx = (1, . . . , 1)}, attained at the point x0 = (1/d, . . . , 1/d).231

The maximum value is232

φ(x0) =
g

2
ln

(
(d− 1)d−1

dd−2

)
,

and, for ψ in (3.5) and the Hessian D2φ,233

ψ(x0) = (d− 1)h/2, D2φ(x0) = −d(d− 2)

d− 1
I.

Proof. We write φ = 1
2

∑
v∈V (G) φv , where234

φv(xe : e � v) =
∑
e�v

((1 − xe) ln(1 − xe) − xe ln(xe)). (3.6)

Fix a vertex v ∈ V (G). We rename the variables xe, e � v, by x1, . . . , xd, for convenience.235

Since φv is continuous, it has a maximum over the compact set236

Σd :=

{
(xi)i ∈ [0, 1]d :

d∑
1

xi = 1

}
.

Let xv ∈ Σd be a maximum point of φv . Assume first that xv is an interior point, i.e., that237

xv ∈ (0, 1)d. Then the function f(y) = φv(x
v
1 + y, xv2 − y, xv3, . . . , x

v
d) achieves a maximum at238

y = 0. Therefore, f′(0) = 0 and, by the chain rule,239

∂φv(x)

∂x1
(xv) =

∂φv(x)

∂x2
(xv).

By the same argument (or by the general Lagrange multiplier method), we have that for240

some constant cv > 0241

∂φv(x)

∂xi
(xv) = cv, for i = 1, . . . , d.

But242

∂φv(x)

∂xi
(xv) = − ln(1 − xi) − ln xi − 2,
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so243

xvi
(
1 − xvi

)
= exp{−cv − 2} for all i = 1, . . . , d.

This implies that the xvi s are all at the same distance from 1/2. That is, for some constant244

c′
v � 0 we have xvi = 1/2 ± c′

v for i = 1, . . . , d. Since
∑

i x
v
i = 1 and d � 3, we have to choose245

the minus sign for all i, and thus all xvi are equal. Since xv ∈ Σd we conclude that xvi = 1/d246

for i = 1, . . . , d.247

We also have to consider the boundary of Σd. If, say, xv1 = 0 and 0 < xv2 < 1, then f248

above is defined for small positive y with f′(0+) = +∞, so xv cannot be a maximum249

point on Σd. The only remaining points are those with all xi ∈ {0, 1}, but then φv(x) = 0,250

while φv(1/d, . . . , 1/d) > 0, so these too cannot be (global) maximum points. Hence xv is251

the unique maximum point for φv on Σd.252

Setting x0 = (1/d, . . . , 1/d) ∈ Rg , we have for all x ∈ K ∩W

φ(x) � 1
2

∑
v

φv(x
v) = φ(x0).

Moreover, the inequality is strict for all x �= x0. This proves that x0 is a unique maximum253

point of φ in K ∩W . Clearly, x0 belongs to the interior of K . Moreover, φ(x0) and ψ(x0)254

are given by the formulas stated in Lemma 3.1.255

Finally, the Hessian D2φ(x) is diagonal with entries (1 − xe)
−1 − x−1

e . Hence, at x0 we256

have D2φ(x0) = − d(d−2)
d−1

I .257

We have verified all assumptions of Theorem 2.3, for any neighbourhood K1 of x0 with258

K1 ⊂ K◦. To apply formula (2.7), we still need to compute the rank of the lattice L(1)
G and259

its determinant det(L(1)
G ).260

Lemma 3.2.261

(i) If G is non-bipartite then the lattice L(1)
G has rank h− g and determinant det(L(1)

G ) =262
1
2

det(A+ DG)1/2.263

(ii) If G is bipartite then the lattice L(1)
G has rank h− g + 1 and determinant det(L(1)

G ) =264

det(A′ + D′
G)1/2, where the matrix A′ (respectively, D′

G) is obtained by deleting the last265

row and column of A (respectively, DG).266

Proof. For v ∈ V (G) define the vector xv =
(
1[v ∈ e], e ∈ E(G)

)
given by the row of the267

incidence matrix Â corresponding to v. For convenience, rename these vectors x1, . . . , xg .268

Then, by (2.1), the Gram matrix of x1, . . . , xg is ÂÂT = A+ DG. This matrix is singular if269

and only if there exists a non-zero vector y = (yv) ∈ RV (G) with yÂ = 0. This is equivalent270

to yi = −yj for every edge ij, and it is easily seen that, when G is connected, such a271

non-zero vector y exists only if G is bipartite, and that if G is connected and bipartite,272

there is a one-dimensional space of such solutions y.273

Consequently, in the non-bipartite case (i), the vectors x1, . . . , xg are linearly independent.274

We apply Lemma 6.2 with N = h, m = g and using the vectors x1, . . . , xg . Let L, L⊥ and275

L0 be as in Lemma 6.2. Then L(1)
G = L⊥, and thus L(1)

G has rank h− g, by Lemma 6.2.276
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Furthermore, by Lemma 2.1 and (2.1),277

det(L0) =
(
det(〈xi, xj〉)gi,j=1

)1/2
= det(A+ DG)1/2.

Moreover, (tv, v ∈ V (G)) solves (6.1) if and only if tv ≡ −tw (mod 1) for every edge vw.278

Going around an odd cycle, we see that tv ≡ 0 or tv ≡ 1/2 for every vertex on the cycle.279

Since G is connected, it follows that there are exactly two solutions to (6.1): tv ≡ 0 for280

every v and tv ≡ 1/2 for every v. Hence q = 2 in Lemma 6.2, and the result follows.281

Now suppose that G is bipartite. Then the vectors x1, . . . , xg−1 are linearly independent282

and xg can be written as a {±1}-combination of x1, . . . , xg−1, since the sum of vectors xv283

over all vertices v on either side of the vertex bipartition gives the vector (1, 1, . . . , 1). We284

apply Lemma 6.2 with N = h, m = g − 1, and using the vectors x1, . . . , xg−1. The lemma285

asserts that L(1)
G = L⊥ has rank h− g + 1, and286

det(L0) =
(
det(〈xi, xj〉)g−1

i,j=1

)1/2
= det(A′ + D′

G)1/2.

Finally, let w ∈ V (G) correspond to xg . If (tv, v ∈ V (G) \ {w}) solves (6.1) then tu = 0 for287

every neighbour u of w. In turn this implies that tu = 0 for every vertex u at distance 2288

from w, and iterating this shows that tu = 0 for all vertices u in the connected graph G.289

Therefore q = 1 in Lemma 6.2 and the proof is complete.290

Example 1. When G = K4,291

det(A+ DG) =

∣∣∣∣∣∣∣∣
3 1 1 1

1 3 1 1

1 1 3 1

1 1 1 3

∣∣∣∣∣∣∣∣ = 48.

Thus Lemma 3.2(i) says that L(1)
G has rank 2 and292

det(L(1)
G ) =

√
48

2
=

√
12.

Example 2. Let G = K3
2 be the multigraph with two vertices and three parallel edges.293

Then A+ DG =
(

3 3
3 3

)
, and deleting one row and column gives the 1 × 1 matrix (3). Hence294

L(1)
G has rank 2 and det(L(1)

G ) =
√

3, using Lemma 3.2(ii).295

We are ready to apply formula (2.7) of Theorem 2.3.296

Theorem 3.3. Suppose that G is d-regular, where d � 3.297

(i) If G is non-bipartite then298

EXG ∼ 2(d− 1)dg/4√
det(A+ dI)

(
d− 1

d(d− 2)

)dg/4−g/2 (
(d− 1)d−1

dd−2

)gn/2

=
2(d− 1)(d−1)g/2

(d(d− 2))dg/4−g/2 √
det(A+ dI)

(
(d− 1)d−1

dd−2

)gn/2

.
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(ii) If G is bipartite then299

EXG ∼ (d− 1)dg/4√
det(A′ + dI)

(
d− 1

d(d− 2)

)dg/4−g/2+1/2

(2πn)1/2

(
(d− 1)d−1

dd−2

)gn/2

=
(d− 1)(d−1)g/2+1/2

(d(d− 2))dg/4−g/2+1/2
√

det(A′ + dI)
(2πn)1/2

(
(d− 1)d−1

dd−2

)gn/2

,

where A′ is obtained by deleting the last row and column of A.300

Proof. Let r be the rank of L(1)
G , and recall that the Hessian H = D2φ(x0) is diagonal301

and equals − d(d−2)
d−1

I by Lemma 3.1. Thus H |V = − d(d−2)
d−1

I too, and det(−H |V ) = ( d(d−2)
d−1

r
).302

Hence the result follows from (3.1) and Theorem 2.3, using Lemmas 3.1 and 3.2, and the303

fact that h = dg/2.304

Example 3. For G = K4, d = 3, g = 4 and thus, using Example 1,305

EXG ∼ 2 · 24

3
√

48

(
4

3

)2n

=
8

3
√

3

(
4

3

)2n

.

Example 4. For the bipartite multigraph G = K3
2 with two vertices and three parallel306

edges we have d = 3, g = 2, and by Example 2307

EXG ∼ 8

3
√

3

√
πn

(
4

3

)n

.

4. The second moment of XG308

We now work towards an asymptotic expression for the second moment of XG, using the309

same approach as in the previous section. To simplify our calculations we consider only310

regular multigraphs G of degree at least three.311

Given a pair (M1,M2) of perfect matchings in Ln(G), for a vertex i ∈ V (G) and two312

(possibly equal) edges e, f � i, let �ief be the number of vertices in Vi whose incident313

edges in M1 and M2 lie, respectively, in the fibres Fe and Ff . Form these numbers into314

the gd2-dimensional vector � = �(M1,M2) =
(
�ief : i ∈ [g], e, f � i

)
. Let315

V ∗ :=

{(
zief : i ∈ [g], e, f � i

)
∈ Rgd2

: for every e ∈ E(G) with endpoints i and j,

ziee = zjee,
∑
f�i

zief =
∑
f�j

zjef ,
∑
f�i

zife =
∑
f�j

zjfe

}
.

Then the vector � belongs to the set316

Q :=

{
(zief) ∈ V ∗ ∩ Zgd2

:
∑
e,f�i

zief = n for i ∈ [g]

}
.

(The three conditions in V ∗ follow from consideration of the edges in M1 ∩M2, M1 and317

M2, respectively.) Fix a particular vector z with nz ∈ Q. (By our assumption that there318
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is a perfect matching in Ln(G), it follows that at least one such vector exists.) Then319

Q = L(2)
G + nz, where L(2)

G is the lattice defined by320

L(2)
G :=

{
(νief) ∈ V ∗ ∩ Zgd2

:
∑
e,f�i

νief = 0 for i ∈ [g]

}
.

(The superscript 2 denotes the second moment.)321

Given a pair (M1,M2) of perfect matchings and thus a vector � ∈ Q, we further define,322

for an edge e ∈ E(G) and an endpoint i of e,323

se = sie(�) =
∑

f�i, f �=e
�ief , te = tie(�) =

∑
f�i, f �=e

�ife, ue = uie(�) =
∑

f,f′�i; f,f′ �=e
�iff′ ;

these are the numbers of edges in the fibre Fe that belong to M1 \M2, M2 \M1 and324

(M1 ∪M2)c, respectively, so they do not depend on the choice of endpoint i of e. We have,325

for every edge e and endpoint i,326

se + te + ue + �iee = n.

We now calculate the expected number of pairs of perfect matchings (M1,M2) in Ln(G)327

corresponding to a given non-negative integer vector � = (�ief) ∈ L(2)
G + nz. First, partition328

each Vi into d2 subsets of sizes (�ief)e,f�i; this can be done in329

g∏
i=1

n!∏
e,f�i �ief!

= n!g
g∏
i=1

∏
e,f�i

(�ief!)
−1

ways. Given these partitions there are330

se! te! ue! �iee!

possibilities for the fibre Fe (where i is an endpoint of e), with probability 1/n! each. Hence331

the expected number of pairs (M1,M2) of perfect matchings in Ln(G) which correspond332

to the vector � is given by333

an(�) = n!g−dg/2
∏
i∈[g]

(∏
e�i

(
se! te! ue!

�iee!

)1/2 ∏
f�i, f �=e

1

�ief!

)
.

Thus we can write334

E(X2
G) =

∑
�∈(L(2)

G +nz)∩nK

an(�), (4.1)

where K = [0, 1]gd
2
. This will allow us to apply the same arguments as used in Section 3.335

We now switch to continuous variables x ∈ Rgd2
, where xief corresponds to �ief/n. Define336

the functions σie = σie(x), τie = τie(x) and γie = γie(x) to be continuous scaled analogues337

of sie, tie and uie respectively. That is,338

σie =
∑

f�i, f �=e
xief , τie =

∑
f�i, f �=e

xife, γie =
∑

f,f′�i; f,f′ �=e
xiff′ ,
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so that σie(�/n) = sie(�)/n and so on. Then, applying (3.2), it follows that an(�) satisfies339

condition (2.6) of Theorem 2.3 with340

bn = (2πn)g/2+3h/2−d2g/2,

ψ(x) =
∏
i∈[g]

∏
e�i

(
σieτieγie

xiee

)1/4 ∏
f�i, f �=e

x
−1/2
ief ,

φ(x) = 1
2

∑
i∈[g]

∑
e�i

(
σie ln σie + τie ln τie + γie ln γie − xiee ln xiee − 2

∑
f�i, f �=e

xief ln xief

)
. (4.2)

(Again, if some xief , σie, τie or γie is 0, then we replace it by 1/n in the definition of ψ(x).)341

Let W be the domain defined by342

W :=

{
(xief) ∈ V ∗ :

∑
e,f�i

xief = 1 for i ∈ [g]

}
.

We conjecture that for all connected d-regular multigraphs G with no loops, the function343

φ has a unique maximum on K ∩W , attained at the point344

x0 = (1/d2, . . . , 1/d2).

Unfortunately, we have been unable to prove this, and have only been able to verify this345

computationally for d = 3. For future reference, note that346

ψ(x0) =
(
(d− 1)dd−2

)dg
, φ(x0) = g ln

(
(d− 1)d−1

dd−2

)
. (4.3)

One approach to finding the maximum of φ is to mimic the proof of Lemma 3.1. The347

function φ can be written as the sum over i = 1, . . . , g of functions φi, where the sets of348

variables appearing in different φi are disjoint. For convenience we drop the index i and349

rename all variables corresponding to vertex i as xef := xief , and let σe := σie, τe := τie,350

γe := γie. Then351

φi(x) = 1
2

∑
e�i

{
σe ln σe + τe ln τe + γe ln γe − xee ln xee − 2

∑
f�i, f �=e

xef ln xef

}
.

Since G is d-regular and φi depends only on the degree of i in G, all the functions φi are352

equivalent under relabelling of variables.353

Now define the domain354

Σd2 =

{
(xef)e,f�i ∈ [0, 1]d

2

:
∑
e,f�i

xef = 1

}
.

It suffices to prove that φi has a unique maximum on Σd2 attained at the point355

(1/d2, . . . , 1/d2). Applying the Lagrange multiplier method to Σd2 , we see that at an356

interior maximum point, all partial derivatives of φi must be equal. This gives d2 − 1357

(nonlinear) equations (together with
∑

e,f xef = 1) to be solved for d2 variables. We tried358

to solve this system using Maple. Unfortunately, Maple seems unable to handle the359

computations for d � 4. Hence we only have the desired result for d = 3.360
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Lemma 4.1. If G is 3-regular then the function φ defined by (4.2) has a unique maximum361

on K ∩W attained at the point (1/9, . . . , 1/9) ∈ R9g .362

Proof. As explained above, we consider only the function φi for a fixed vertex i. Using363

Maple, we solved for points in {(xef)e,f :
∑

e,f xef = 1} where all the 9 partial derivatives364

of φi are equal. Exactly four solutions were found, of which only one lies in [0, 1]9, giving365

the point x0 = (1/9, . . . , 1/9) ∈ Σ9. (The other three solutions each contain both positive366

and negative entries.) We have φ(x0) = ln(4/3).367

It remains to consider the boundary, where one or several xef = 0. If xee = 0 and γf > 0368

for f �= e, then ∂
∂xee

φ(x) = +∞, and thus x is not a maximum point. Similarly, x cannot369

be a maximum point if xef = 0, where e �= f and at most one of σe, τf and γf′ (where370

f′ is the third index) vanishes. It is easily seen that the only remaining cases are when371

the only non-zero variables (after relabelling the indices as 1, 2, 3 in some order) are372

{x12, x21}, {x11, x22, x33} or {x11, x12, x13}, or a subset of one of these. In the first case we373

have φ = 0. In the two latter cases, φi equals, after relabelling, 1
2
φv defined in (3.6) (at the374

corresponding step of the first moment calculation), and thus the maximum over one of375

these sets is 1
2

ln(4/3) < φ(x0). (We omit the details.) Hence, there is no global maximum376

on the boundary.377

Consequently, x0 is the unique maximum point of φi on Σ9. Arguing as in Lemma 3.1378

completes the proof.379

Let V = W − z be the subspace spanned by L(2)
G , i.e.,380

V :=

{
(xief) ∈ V ∗ :

∑
e,f�i

xief = 0 for i ∈ [g]

}
.

Theorem 4.2. Suppose that G is d-regular, where d � 3. If the function φ defined in (4.2)381

has a unique maximum on K ∩W at x0 = (1/d2, . . . , 1/d2), then382

E(X2
G) ∼ ((d− 1)dd−2)dg

det
(
L(2)
G

)
det(−H |V )1/2

(2πn)r/2+g/2+3dg/4−d2g/2

(
(d− 1)d−1

dd−2

)gn

,

where r is the rank of L(2)
G and H = D2φ(x0) is the Hessian of φ at x0, provided the383

determinant in the denominator is non-zero. In particular, this expression holds for all 3-384

regular connected graphs G.385

Proof. This is now an immediate consequence of Theorem 2.3, using (4.1) and (4.3). The386

final statement follows from Lemma 4.1.387

It remains to calculate the determinants of L(2)
G and −H |V , and the rank r. In the388

non-bipartite case, part of this is covered by the next lemma.389

Lemma 4.3. Suppose that G is non-bipartite and d-regular, where d � 3. Recall that h390

denotes the number of edges in G, so h = dg/2. Then the lattice L(2)
G has rank d2g − (g +391
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3h) = d2g − g − 3dg/2 and determinant392

det
(
L(2)
G

)
= 23h/2−3g/2−2(d(d− 2))h/2−g/2 det(dI + A) det(d(2d− 3)I − A)1/2

= 23h/2−3g/2−2(d(d− 2))h/2−g/2
g∏
i=1

(d+ αi)(d(2d− 3) − αi)
1/2,

where α1, . . . , αg are the eigenvalues of A.393

Proof. The linear space V spanned by L(2)
G is the subspace of Rgd2

orthogonal to the394

following g + 3h vectors:395

• one vector x0j for every j ∈ V (G), with x0j
ief = 1[i = j],396

• one vector x1ε for every ε ∈ E(G), with x1ε
ief =�aiε1[e = f = ε],397

• one vector x2ε for every ε ∈ E(G), with x2ε
ief =�aiε1[e = ε �= f],398

• one vector x3ε for every ε ∈ E(G), with x3ε
ief =�aiε1[e �= ε = f].399

Relabel these vectors (in this order) as x1, . . . , xg+3h. Then their Gram matrix Γ can be400

written in block form, with blocks of dimensions g, h, h, h:401

Γ =

⎛⎜⎜⎜⎝
d2I �A (d− 1)�A (d− 1)�A
�AT 2I 0 0

(d− 1)�AT 0 2(d− 1)I �AT �A− 2I

(d− 1)�AT 0 �AT �A− 2I 2(d− 1)I

⎞⎟⎟⎟⎠.
In order to evaluate the Gram determinant det(Γ), we may make an orthogonal change402

of basis in the first component Rg , and another orthogonal change of basis in each of403

the components Rh (we choose the same change in all three). It is well known that we404

can make such changes of basis such that any given g × h matrix B obtains the form405

of a diagonal g × g matrix Ds with h− g additional columns of 0s; this is known as the406

singular value decomposition of B, and is easily seen by choosing an orthonormal basis407

z1, . . . , zh in Rh such that BTB is diagonal, and then choosing an orthonormal basis in Rg408

containing the vectors Bzi/‖Bzi‖, for all i such that Bzi �= 0. We choose such bases for409

B = �A. The diagonal entries s1, . . . , sg of Ds can be assumed to be non-negative, and they410

are identified by the fact that the eigenvalues of BBT = �A�AT are {s2i }. By (2.2), we thus411

have412

s2i = d− αi. (4.4)

Hence, with D̃s = (Ds, 0) a g × h matrix with non-zero elements given by (4.4),413

det Γ =

∣∣∣∣∣∣∣∣∣
d2I D̃s (d− 1)D̃s (d− 1)D̃s

D̃Ts 2I 0 0

(d− 1)D̃Ts 0 2(d− 1)I D̃Ts D̃s − 2I

(d− 1)D̃Ts 0 D̃Ts D̃s − 2I 2(d− 1)I

∣∣∣∣∣∣∣∣∣ . (4.5)
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Since Ds is a diagonal matrix, we can reorder the rows and columns in (4.5) so that we414

obtain a block diagonal matrix with g 4 × 4 blocks415

Γi :=

⎛⎜⎜⎝
d2 si (d− 1)si (d− 1)si
si 2 0 0

(d− 1)si 0 2(d− 1) s2i − 2

(d− 1)si 0 s2i − 2 2(d− 1)

⎞⎟⎟⎠ (4.6)

and h− g identical 3 × 3 blocks416

Γ0 :=

⎛⎝2 0 0

0 2(d− 1) −2

0 −2 2(d− 1)

⎞⎠. (4.7)

Hence, by straightforward calculations,417

det(Γ) = det(Γ0)h−g
g∏
i=1

det(Γi)

= (8d(d− 2))h−g
g∏
i=1

(2d− s2i )
2
(
2d2 − 4d+ s2i

)
= (8d(d− 2))h−g

g∏
i=1

(d+ αi)
2(d(2d− 3) − αi).

(4.8)

Since G is non-bipartite, −d < αi � d for every i, and thus (4.8) shows that det(Γ) �= 0.418

Hence, the vectors x1, . . . , xg+3h, or in different notation419

{x0j : j ∈ V (G)} ∪ {x1ε, x2ε, x3ε : ε ∈ E(G)}, (4.9)

are linearly independent, so they form a basis in V⊥.420

We apply Lemma 6.2, with N = d2g, m = g + 3h = g + 3dg/2, and using the vectors421

x1, . . . , xg+3h in (4.9). Then L(2)
G = L⊥. Hence, rank(L(2)

G ) = N − m = d2g − g − 3h. We have422

det(L0) = det(Γ)1/2 by Lemma 2.1. Finally, we claim that there are 4 solutions (mod 1) to423

(6.1): if we let t0j denote the coefficient of x0j , and so on, the solutions have t0j = t0 for all j424

and t1ε = t1, t2ε = t2, t3ε = t3 for all ε, where (t0, t1, t2, t3) = (0, 0, 0, 0), (0, 0, 1
2
, 1

2
), ( 1

2
, 1

2
, 1

2
, 0),425

or ( 1
2
, 1

2
, 0, 1

2
). (To prove this, first consider the equations in (6.1) which correspond to426

variables xiee, and use the existence of an odd cycle. This gives the possible values of427

t0 and t1. The rest of the proof follows by considering the equations in (6.1) which428

correspond to variables xief for a given vertex i, with e �= f.)429

Hence q = 4, and Lemma 6.2 yields430

det
(
L(2)
G

)
= det(L⊥) = det(Γ)1/2/4.

The result follows by (4.8).431

Example 5. For G = K4, we have d = 3, g = 4, h = 6, and A has the eigenvalues432

3,−1,−1,−1. Hence Lemma 4.3 yields det(L(2)
G ) = 27 35/2 53/2.433

We believe that there is a similar result for regular bipartite graphs, but we have not434

explored it. (Presumably, the rank is then d2g − g − 3h+ 2.)435
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Unfortunately, we have not been able to find a similar general formula for det(−H |V )436

in Theorem 4.2. However, this quantity can be calculated directly for a particular graph437

G, once a basis for L(2)
G is known.438

Example 6. When G = K4, using Maple we found a basis {z1, . . . , z14} of V and then439

calculated det(−H |V ) = 2−22 328 5−1 113 using (2.5). Hence by Theorem 4.2 and Example 5,440

E
(
X2
G

)
∼ 216 3−9/2 5−1 11−3/2

(
4

3

)4n

.

Example 7. When G = K3
2 is the multigraph with two vertices and three parallel edges,441

Maple computations confirmed that L(2)
G has rank 9 and gave442

det
(
L(2)
G

)
= 24 33/2 and det(−H |V ) = 2−16 318 52.

Hence by Theorem 4.2,443

E(X2
G) ∼ 211 3−9/2 5−1 πn

(
4

3

)2n

.

5. Short cycles in random lifts444

Let Zk denote the number of cycles of length k in Ln(G), for k � 2. (Note that Z2 is zero445

unless there are multiple edges in G.) To apply the small subgraph conditioning method446

to XG, we must understand the distribution of short cycles in random lifts, as well as their447

interaction with perfect matchings. This will enable us to verify conditions (A1)–(A3) of448

[11, Theorem 9.12], with their Yn given by our XG (the index n is suppressed), and with449

their Xkn given by our Zk .450

To compute the limiting distributions in (A1) and (A2) of [11, Theorem 9.12], we will451

use the method of moments. Moreover, for (A2) we will be guided by [11, Lemma 9.17452

and Remark 9.18], which tell us that we need only compute asymptotically453

E(XG (Z2)j2 · · · (Zm)jm)/EXG,

for integer constants m � 0 and j2, . . . , jm � 0. Here (Z)j denotes the falling factorial454

Z(Z − 1) · · · (Z − j + 1).455

Let k be a fixed positive integer. It is more convenient to count rooted oriented k-456

cycles, which introduces a factor of 2k into the calculations. A k-cycle in Ln(G) can457

then be thought of as a lift of a non-backtracking closed k-walk in G, which is a walk458

i0e1i1e2 · · · ik−1ek in G such that ej is an edge of G with endpoints {ij , ij+1} and ej �= ej−1,459

for 1 � j � k. (Here and throughout this section, arithmetic on indices in k-walks is460

performed modulo k.) Note that if G is simple then any three consecutive vertices on461

the walk must all be distinct. These walks arise in various contexts (see, for example,462

[1, 5, 10]) and have also been called irreducible [9] and non-backscattering [13]. Denote463

by wk the number of non-backtracking closed k-walks in G, for k � 2.464

The following lemma shows that condition (A1) of [11, Theorem 9.12] holds.465
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Lemma 5.1. Let λk = wk/(2k) for all k � 2, where wk is the number of non-backtracking466

closed k-walks in G. Then Zk ∼ Po(λk), jointly for all k � 2.467

Proof. Fix a non-backtracking closed k-walk C = i0e1i1 · · · ik−1ek in G. The (oriented)468

k-cycle C ′ = f1f2 · · · fk in Ln(G) is a lift of C if fj ∈ Fej for j = 1, . . . , k. Hence the number469

of possible lifts C ′ of C is (1 + o(1))nk , and each will appear in Ln(G) with probability470

(1 + o(1))n−k . It follows that471

EZk =
∑
C

∑
C ′

P(C ′ ⊂ Ln(G)) =
wk

2k
+ o(1).

Similar arguments hold for higher joint factorial moments, completing the proof.472

For the remainder of this section we restrict our attention to d-regular multigraphs with473

d � 3. Next we verify condition (A2) of [11, Theorem 9.12] using the approach suggested474

in [11, Remark 9.18].475

Lemma 5.2. Suppose that G is d-regular with d � 3, and for k � 2, let476

μk =

(
1 +

(
−1

d− 1

)k)
λk.

Then, for any integer m � 2 and non-negative integers j2, . . . , jm,477

E(XG (Z2)j2 · · · (Zm)jm)

EXG

−→
m∏
i=2

μ
ji
i as n → ∞.

Proof. For ease of notation, throughout this proof we write P(M) := P(M ⊆ Ln(G)),478

P(M,C ′) := P(M ⊆ Ln(G), C ′ ⊆ Ln(G)), and so on. First we estimate E(XG Zk). We write479

E(XG Zk) =
∑
M

∑
C

∑
C ′

P(M,C ′) =
∑
M

P(M)
∑
C

∑
C ′

P(C ′|M),

where the sums extend over all possible perfect matchingsM in Ln(G), all non-backtracking480

closed k-walks C in G, and all their possible lifts C ′, respectively.481

To calculate the inner double sum, we fix a perfect matching M0 and condition on its482

presence in Ln(G). Let C = i0e1i1 · · · ik−1ek be a given non-backtracking closed k-walk in483

G. For a lift C ′ of C with edges f1f2 · · · fk , let484

ξj(C
′) =

{
1 if fj ∈ M0,

0 otherwise,
for 1 � j � k.

To estimate the expected number of lifts of C given M0, we break the sum over all C ′485

according to the vector ξ(C ′):486 ∑
C ′

P(C ′|M0) =
∑

u∈{0,1}k

∑
C ′:ξ(C ′)=u

P(C ′|M0).

Let �e be the number of edges of M0 in the fibre Fe, and say that M0 is good if487

|�e − n/d| � n2/3 for every e.
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We may assume that M0 is good, since the calculations for the expectation in Section 3488

show that the contribution from other matchings is negligible. (Specifically, this follows489

from the proof of Lemma 6.3: in particular the fact that S2 = o(1), S3 = o(1), using490

notation from that proof.)491

Hence, for a given u = (u1, u2, . . . , uk) ∈ {0, 1}k ,492

P(C ′|M0) ∼
(

1

n− n/d

)k−
∑

i ui

.

Let t00(u) and t01(u) be the numbers of substrings 00 and 01 in u, respectively. Next we493

prove that the number of lifts C ′ = f1 · · · fk of C such that ξ(C ′) = u is asymptotically494

equal to495 (
n− 2n

d

)t00(u)(
n

d

)t01(u)

.

Indeed, let Vie be the set of endpoints in Vi of the �e edges in M0 ∩ Fe, for i incident to496

e ∈ E(G). If, say, u1 = u2 = 0, which means that neither f1 nor f2 are in M0, then we can497

choose the end of f1 in Vi1 from Vi1 \ (Vi1e1
∪ Vi1e2

), and |Vi1 \ (Vi1e1
∪ Vi1e2

)| ∼ n− 2n/d498

since we assume that M0 is good. Similarly, if u1 = 0 and u2 = 1, which means that499

f1 �∈ M0 but f2 ∈ M0, then we have to choose the end of f1 from Vi1e2
, a set of size ∼ n/d.500

Note also that if u1 = 1 then we must have u2 = 0, and if we have already selected the501

end w of f1 in Vi0 , then the other end of f1 is completely determined as the partner of w502

in M0.503

Multiplying these two expressions together yields that504 ∑
C ′:ξ(C ′)=u

P(C ′|M0) = bu1u2
· · · buk−1ukbuku1

+ o(1),

where b00, b01, b10, b11 form the matrix505

B =

⎛⎝ d−2
d−1

1
d−1

1 0

⎞⎠.
Note that B has eigenvalues 1 and −1/(d− 1). Summing over all u = (u1, . . . , uk), we find506

that the conditional expected number of lifts of C is507 ∑
C ′

P(C ′|M0) = Tr(Bk) + o(1) = 1 +

(
−1

d− 1

)k

+ o(1).

Hence the expected number of k-cycles in Ln(G), conditioned on the existence of a given508

good perfect matching M0, is asymptotically equal to509 ∑
C

∑
C ′

P(C ′|M0) ∼ μk :=

(
1 +

(
−1

d− 1

)k)
wk

2k
=

(
1 +

(
−1

d− 1

)k)
λk.

Finally,510

E(XG Zk) ∼
∑
M

P(M)μk = μk EXG.
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All the above calculations work similarly for higher factorial moments and yield the511

desired result.512

Denote a directed edge of G by (e, i, j), where e ∈ E(G) is incident to i, j ∈ V (G) and513

i �= j; this denotes e directed from i to j. Now let R be the dg × dg matrix with rows and514

columns indexed by directed edges of G, and515

R(e,i,j),(f,p,q) =

{
1 if p = j and f �= e,

0 otherwise.

(Here R is the adjacency matrix of a version of the directed line graph of G, where U-turns516

are forbidden.) Then517

wk = Tr(Rk) = θk1 + · · · + θkdg, (5.1)

where θ1, . . . , θdg are the eigenvalues of R. Note that d− 1 is an eigenvalue of R with518

eigenvector (1, 1, . . . , 1)T ; since R has non-negative entries, this is the eigenvalue with519

largest modulus. Now for k � 2, the quantity μk defined in Lemma 5.2 equals520

μk = (1 + δk)λk, where δk =

(
−1

d− 1

)k

> −1.

Therefore the quantity
∑

k λkδ
2
k in condition (A3) of [11, Theorem 9.12] is521

∑
k

λkδ
2
k =

∑
k�1

wk

2k (d− 1)2k
=

∑
k�1

1

2k

dg∑
t=1

(
θt

(d− 1)2

)k

= −1

2

dg∑
t=1

ln

(
1 − θt

(d− 1)2

)
,

which is finite as required. Furthermore,522

exp

(∑
k

λkδ
2
k

)
= (d− 1)dg

( dg∏
t=1

((d− 1)2 − θt)

)−1/2

= (d− 1)dg det
(
(d− 1)2I − R

)−1/2
. (5.2)

In order to assist with the verification of condition (A4) from from [11, Theorem 9.12],523

we will rewrite this expression in terms of the adjacency matrix A of G. The following524

result was proved by Friedman [9].525

Lemma 5.3 ([9], Theorem 10.3). Suppose that G is d-regular with d � 3 and let α1, . . . , αg526

be the eigenvalues of the adjacency matrix of G. For i = 1, . . . , g, let β+
i and β−

i denote the527

roots of the quadratic x2 − αix+ d− 1 = 0. That is,528

β+
i = 1

2
αi +

√
1
4
α2
i − (d− 1), β−

i = 1
2
αi −

√
1
4
α2
i − (d− 1).

Then the eigenvalues of R are β+
i , β−

i for i = 1, . . . , g, together with 1 and −1, the latter529

two repeated g(d− 2)/2 times each. Hence, for k � 2, the number of non-backtracking closed530
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k-walks in G is given by531

wk = 1
2
g(d− 2)

(
1 + (−1)k

)
+

g∑
i=1

(
(β+
i )k + (β−

i )k
)
.

Note that there may be repetitions among β+
i , β

−
i , and some of these may coincide with532

±1. Hence the multiplicities of these eigenvalues may not be exactly 1 or g(d− 2)/2: see533

Example 8 below.534

We now use Lemma 5.3 to rewrite (5.2) in terms of the eigenvalues of the adjacency535

matrix of G.536

Corollary 5.4. Suppose that G is d-regular, with d � 3. The expression in (5.2) can be537

written as538

exp

(∑
k

λkδ
2
k

)
= (d− 1)dg−g/2((d− 1)4 − 1)−(d−2)g/4 det((d− 1)3 + 1)I − (d− 1)A)−1/2

= (d− 1)dg−g/2((d− 1)4 − 1)−(d−2)g/4

g∏
i=1

(
(d− 1)3 + 1 − (d− 1)αi

)−1/2
.

Proof. It follows from Lemma 5.3 that the characteristic polynomial of R is given539

by540

det(λI − R) =

dg∏
i=1

(λ− θi) = (λ− 1)(d−2)g/2(λ+ 1)(d−2)g/2

g∏
i=1

(λ− β+
i )(λ− β−

i )

= (λ2 − 1)(d−2)g/2

g∏
i=1

(λ2 − αiλ+ d− 1)

= (λ2 − 1)(d−2)g/2 det((λ2 + d− 1)I − λA).

The proof is completed by substituting this into (5.2) with λ = (d− 1)2.541

Example 8. When G = K4 the eigenvalues of A are α1 = 3, α2 = α3 = α4 = −1. By542

Lemma 5.3, the eigenvalues of R are 2, 1 (three times), −1 (twice), and 1
2
(−1 ±

√
7i)543

(three times each), so the number of non-backtracking closed k-walks in K4 is544

wk = 2k + 3 + 2(−1)k + 3

(
−1 +

√
7i

2

)k

+ 3

(
−1 −

√
7i

2

)k

.

Furthermore, by Corollary 5.4,545

exp

(∑
k

λkδ
2
k

)
= 210 15−1 det(9I − 2A)−1/2 = 210 3−3/2 5−1 11−3/2.
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Example 9. The multigraph with two vertices connected by d parallel edges has adjacency546

matrix547

A =

(
0 d

d 0

)
.

We have β±
1 , β

±
2 = ±(d− 1), ±1 and by Lemma 5.3, the matrix R has eigenvalues ±(d− 1)548

and ±1, the latter with multiplicities d− 1. Hence wk = 2(d− 1)k + 2(d− 1) if k � 2 is549

even, and wk = 0 if k is odd. Corollary 5.4 yields, after some algebra,550

exp

(∑
k

λkδ
2
k

)
= (d− 1)2d−1d−d/2(d− 2)−d/2(d2 − 2d+ 2)−d/2+1/2.

For example, when d = 3 this is 253−3/25−1, while for d = 4 it is 2−15/2375−3/2.551

To complete this section, we prove a concentration result for the number of perfect552

matchings in Ln(G) when G = K4 and when G is the multigraph K3
2 with 2 vertices and 3553

parallel edges. We conjecture that the analogous result is true for any connected d-regular554

multigraph G with no loops, where d � 3, with δk = −(1/(d− 1))k .555

Corollary 5.5. For k � 3, let wk be the number of non-backtracking closed walks of length k556

in K4, and define λk = wk/2k. Further, let Yk be a Poisson random variable with expectation557

λk , with {Yk}k independent, and define δk = (−1/2)k . Then, with G = K4,558

XG

EXG

d−→ W :=

∞∏
i=3

(1 + δi)
Yie−λiδi .

Proof. Let X = XK4
. It follows from Examples 3 and 6 that559

E(X2)

(EX)2
∼ 210 3−3/2 5−1 11−3/2.

By comparing with Example 8, we find that (A4) of [11, Theorem 9.12] is satisfied: that560

is,561

EX2

(EX)2
→ exp

(∑
k

λkδ
2
k

)
as n → ∞.

The other conditions of [11, Theorem 9.12] hold, as follows from Lemmas 5.1 and 5.2.562

Applying [11, Theorem 9.12] completes the proof.563

The same argument applies for the multigraph with two vertices and three parallel564

edges, this time using Examples 4, 7 and 9, leading to the following.565

Corollary 5.6. Recall that K3
2 denotes the multigraph with two vertices and three parallel566

edges. For k � 2, let wk be the number of non-backtracking closed walks of length k, and567

define λk = wk/2k. Further, let Yk be a Poisson random variable with expectation λk , with568
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{Yk}k independent, and define δk = (−1/2)k . Then, with G = K3
2 ,569

XG

EXG

d−→ W :=

∞∏
i=1

(1 + δ2i)
Y2i e−λ2iδ2i .

It is immediate that the limiting distribution W satisfies W > 0 (with probability 1) in570

both Corollary 5.5 and Corollary 5.6. Hence Ln(G) a.a.s. has a perfect matching, for both571

G = K4 and G = K3
2 . This also follows from [12].572

6. Summation by Laplace’s method573

In this section we prove our main approximation tool, Theorem 2.3, which performs a574

summation over lattice points. We will require a little more theory about lattices. The575

following surprising duality was proved by McMullen [14]. (See also [19].)576

Lemma 6.1. Let V be a subspace of RN and let V⊥ be its orthogonal complement. Let577

L and L⊥ be the lattices V ∩ ZN and V⊥ ∩ ZN , and assume that the rank of L equals the578

dimension of V (i.e., that L spans V ). Then L⊥ has rank dim(V⊥) = N − dim(V ) and579

det(L⊥) = det(L).

For our purposes we need a simple extension.580

Lemma 6.2. Let 0 � m � N. Let x1, . . . , xm be linearly independent vectors in ZN . Let V581

be the subspace of RN spanned by x1, . . . , xm and let V⊥ be its orthogonal complement; thus582

V⊥ = {y ∈ RN : 〈y, xi〉 = 0 for i = 1, . . . , m}.

Let L and L⊥ be the lattices V ∩ ZN and V⊥ ∩ ZN , and let L0 be the lattice spanned583

by x1, . . . , xm (i.e., the set {
∑m

i=1 nixi : ni ∈ Z} of integer combinations). Then L⊥ has rank584

N − m and585

det(L⊥) = det(L) = det(L0)/q,

where q is the order of the finite group L/L0. Explicitly, q is the number of solutions586

(t1, . . . , tm) in (R/Z)m (or (Q/Z)m) of the system587 ∑
i

xij ti ≡ 0 (mod 1), j = 1, . . . , N, (6.1)

where xi = (xij)
N
j=1 for i = 1, . . . , m.588

Proof. Since rank(L) = m = dim(V ), we can apply Lemma 6.1 and conclude that589

rank(L⊥) = N − m and det(L⊥) = det(L).

Next, L0 ⊆ V ∩ ZN = L; moreover, L0 and L both span V and thus have the same590

rank. Hence Lemma 2.2 shows that L/L0 is finite and det(L) = det(L0)/q. Note further591
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that L ⊆ V = {
∑

i tixi : ti ∈ R} and thus592

q = |L/L0| =

∣∣∣∣{(ti) ∈ [0, 1)m :
∑
i

tixi ∈ L
}∣∣∣∣.

Furthermore,593 ∑
i

tixi ∈ L ⇐⇒
∑
i

tixi ∈ ZN ⇐⇒
∑
i

xij ti ≡ 0 (mod 1) for j = 1, . . . , J,

and the characterization of q follows.594

The proof of Theorem 2.3 involves reduction to a special case, which we prove first.595

Lemma 6.3. Suppose the following.596

(i) L ⊂ Rr is a lattice with full rank r.597

(ii) K ⊂ Rr is a compact convex set with non-empty interior K◦.598

(iii) φ : K → R is a continuous function with a unique maximum at some interior point599

x0 ∈ K◦.600

(iv) φ is twice continuously differentiable in a neighbourhood of x0 and the Hessian H :=601

D2φ(x0) is strictly negative definite.602

(v) ψ : K1 → R is a continuous function on some neighbourhood K1 ⊆ K of x0 with603

ψ(x0) > 0.604

(vi) For each positive integer n there is a vector �n ∈ Rr .605

(vii) For each positive integer n there is a positive real number bn and a function an : (L +606

�n) ∩ nK → R such that, as n → ∞,607

an(�) = O
(
bne

nφ(�/n)+o(n)
)
, � ∈ (L + �n) ∩ nK, (6.2)

and608

an(�) = bn
(
ψ(�/n) + o(1)

)
enφ(�/n), � ∈ (L + �n) ∩ nK1, (6.3)

uniformly for � in the indicated sets.609

Then, as n → ∞,610 ∑
�∈(L+�n)∩nK

an(�) ∼ (2π)r/2ψ(x0)

det(L) det
(
−H

)1/2
bnn

r/2enφ(x0). (6.4)

Proof. We begin with a few simplifications. We may obviously assume that bn = 1.611

Furthermore, by subtracting φ(x0) from φ, and dividing an(�) by enφ(x0), we may suppose612

that φ(x0) = 0.613

Since x0 is an interior maximum point, the gradient Dφ(x0) vanishes, and a Taylor614

expansion at x0 shows that, using (iv), as |x− x0| → 0,615

φ(x) = 1
2
〈x− x0, D

2φ(x0)(x− x0)〉 + o(|x− x0|2) (6.5)

� −c1|x− x0|2 + o(|x− x0|2)
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for some positive constant c1. Consequently, there exists δ > 0 such that the neighbour-616

hood {x : |x− x0| � δ} is contained in K1 and617

φ(x) � −c2|x− x0|2, |x− x0| < δ (6.6)

for some positive constant c2. We divide the sum in (6.4) into three parts:618

S1 :=
∑

|�/n−x0|<n−1/3

, S2 :=
∑

n−1/3�|�/n−x0|<δ

, S3 :=
∑

|�/n−x0|�δ
.

In the sum S2 we use (6.3) and (6.6); thus each term is619

an(�) = O(enφ(�/n)) = O(e−c2n
1/3

).

Since the number of terms is O(nr), we obtain S2 = o(1).620

Similarly, by compactness, if |x− x0| � δ, then φ(x) � −c3 for some positive constant621

c3. Consequently, for large n, (6.2) shows that each term in S3 is622

an(�) = O(enφ(�/n)+c3n/2) = O(e−c3n/2).

Again, the number of terms is O(nr) and we obtain S3 = o(1).623

We convert the sum S1 into an integral by picking a unit cell U of the lattice L and624

defining an(y) := an(�) for y ∈ U + �, � ∈ L + �n. Let Qn :=
⋃

|�/n−x0|<n−1/3 (U + �), and let625

Q̃n := {z : nx0 +
√
nz ∈ Qn}. Then626

S1 = det(L)−1

∫
Qn

an(y) dy = det(L)−1nr/2
∫
Q̃n

an
(
nx0 +

√
nz

)
dz. (6.7)

Note that Qn is roughly a ball of radius n2/3 centred at nx0, and Q̃n is roughly a ball of627

radius n1/6 centred at 0.628

If y ∈ Qn, then |y/n− x0| � n−1/3 + O(n−1). Since the gradient Dφ(x0) = 0, (iv) implies629

that, for x ∈ Qn/n,630

|Dφ(x)| = O(|x− x0|) = O(n−1/3). (6.8)

If y ∈ U + � ⊂ Qn, then |y/n− �/n| = O(1/n), and (6.8) implies631

nφ(y/n) − nφ(�/n) = O
(
nn−1/3n−1

)
= O

(
n−1/3

)
,

and thus (6.3) implies, uniformly for y ∈ Qn,632

an(y) = an(�) =
(
ψ(y/n) + o(1)

)
enφ(y/n). (6.9)

For every fixed z ∈ Rr , this and the Taylor expansion (6.5) show that, as n → ∞, using633

the continuity of ψ,634

an(nx0 +
√
nz) → ψ(x0)e

1
2 〈z,D2φ(x0)z〉.

Moreover, (6.6) and (6.9) provide a uniform bound, for all z ∈ Rr ,635

|an(nx0 +
√
nz)1Q̃n (z)| � C1e

−c2|z|2 .
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Further, 1Q̃n (z) → 1 for every z. Hence, dominated convergence shows that636 ∫
Q̃n

an(nx0 +
√
nz) dz →

∫
Rr

ψ(x0)e
1
2 〈z,D2φ(x0)z〉 dz

= ψ(x0)(2π)r/2 det
(
−D2φ(x0)

)−1/2
.

The result follows from this and (6.7), together with the estimates S2 = o(1) and S3 = o(1)637

above.638

Proof of Theorem 2.3. First, replacing K by K − w, an(�) by a′
n(�) := an(�+ nw), �n by639

�n − nw, and translating φ and ψ, we reduce to the case w = 0 and thus W = V and640

�n ∈ V .641

Choose a lattice basis {z1, . . . , zr} of L. Consider the mapping T : Rr → V ⊆ RN given642

by (y1, . . . , yr) �→
∑r

i=1 yizi, which thus maps Zr onto L. We apply Lemma 6.3 to L′ := Zr ,643

K ′ := T−1(K), φ ◦ T , ψ ◦ T , �′
n := T−1(�n), and an(T (k)), k ∈ (L′ + �′

n) ∩ nK ′. The Hessian644

D2(φ ◦ T )(T−1x0) equals
(
H(zi, zj)

)r
i,j=1

, and its negative has determinant, by (2.5) and645

(2.3),646

det
(
−H(zi, zj)

)r
i,j=1

= det(−H |V ) det(〈zi, zj〉)ri,j=1 = det(−H |V ) det(L)2. (6.10)

Hence, (2.7) follows from Lemma 6.3. Note that the Hessian D2(φ ◦ T )(T−1x0) is always647

negative semi-definite, because x0 is a maximum point. Hence, it is negative definite648

unless its determinant is zero, which is ruled out by (6.10) and the assumption that649

det(−H |V ) �= 0.650
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