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In 1952 Dirac [8] proved a celebrated theorem stating that if the minimum de-
gree δ(G) in a graph G is at least n/2 then G contains a Hamiltonian cycle. In
1999, Katona and Kierstead initiated a new stream of research devoted to study-
ing similar questions for hypergraphs, and subsequently, for perfect matchings.
A pivotal role in achieving some of the most important results in both these areas
was played by Endre Szemerédi. In this survey we present the current state-of-art
and pose some open problems.

1. Introduction

A k-uniform hypergraph, or k-graph for short, is a pair H = (V,E), where
V := V (H) is a finite set of vertices and E := E(H) ⊆

(

V
k

)

is a family of k-
element subsets of V . Whenever convenient we will identify H with E(H).
A matching in H is a set of disjoint edges of H, and a matching containing
all vertices of H is called perfect.

There are several notions of a hypercycle. Berge [2] defined a hypercycle
of length m in a hypergraph H as an alternating sequence of m vertices
and m edges x1, e1, x2, e2, . . . , xm, em, x1 such that {xi, xi+1} ⊆ ei for all
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2 V. Rödl and A. Ruciński

i = 1, 2, . . . ,m, where xm+1 = x1. Observe that there may be other vertices
than x1, . . . , xm in the edges of a Berge cycle and that there are several
nonisomorphic Berge hypercycles of length m. Bermond et al. [3] studied
the existence of Hamiltonian Berge cycles under some degree conditions.
Also, more recently, there has been some interest in Ramsey-type questions
for Hamiltonian Berge cycles (see, e.g., [10].)

However, following the paper by Katona and Kierstead [13], another
notion of a hypergraph cycle has become gradually more and more popular.

Definition 1.1. For 0 ≤ l ≤ k− 1 a (k, l)-cycle is a k-graph whose vertices
can be ordered cyclically in such a way that the edges are segments of that
cyclic order and every two consecutive edges share exactly l vertices (see
Figure 1 1). A Hamiltonian l-cycle in a k-graph H is then defined as a
(k, l)-cycle in H containing all vertices of H.

Fig. 1. A (5, 2)-cycle and a (5, 3)-cycle

The notion of a (k, l)-cycle, unlike the Berge hypercycle, is unique up to

isomorphism. Let us denote by Ck,l
s the (k, l)-cycle on s vertices. Observe

that s must be divisible by k− l and the cycle has s/(k− l) edges. Further-
more, if we write k = t(k − l) + r, where 1 ≤ t ≤ k and 0 ≤ r ≤ k − l − 1
are uniquely determined by k and l, then s/(k − l) ≥ t + 1. In particular,
s ≥ k + 1 for l = k − 1 while s ≥ 2(k − l) for l < k/2.

If, in addition, k − l divides k then a (k, l)-cycle is regular of degree
k/(k − l). Otherwise, its minimum degree is

⌊

k/(k − l)
⌋

and maximum
degree is

⌈

k/(k − l)
⌉

. Note also that for l = 0 an l-cycle reduces to a
matching.

1All figures prepared electronically by Emory students, Domingos Dellamonica Jr. and
Sangjune Lee
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Given a k-graph H and d vertices v1, . . . , vd ∈ V (H), 1 ≤ d ≤ k − 1,
we denote by degH(v1, . . . , vd) the degree of the d-tuple {v1, . . . , vd} in H,
that is, the number of edges of H which contain v1, . . . , vd. For a vertex
v ∈ V (H), let H(v) denote the link of v in H that is,

H(v) =

{

e ∈
(

V \ {v}
k − 1

)

: e ∪ {v} ∈ H

}

.

In particular,
∣

∣H(v)
∣

∣ = degH(v).

Further, let

δd(H) := δd = min
{

degH(v1, . . . , vd) : {v1, . . . , vd} ⊂ V (H)
}

.

For d = 1, δd(H) is the ordinary minimum vertex degree in H. Observe
that δd(H) ≤

(

n−d
k−d

)

.

Definition 1.2. Let d, k, l, and n satisfy 1 ≤ d ≤ k− 1 and k− l divide n.
We define hld(k, n) to be the smallest integer h such that every n-vertex
k-graph H satisfying δd(H) ≥ h contains a Hamiltonian l-cycle.

As mentioned before, for l = 0, a Hamiltonian l-cycle in a k-graph H
becomes a perfect matching in H. Moreover, any Hamiltonian (k− 1)-cycle
contains a matching of size ⌊n/k⌋. Hence, not surprisingly, the results for
Hamiltonian cycles and perfect (or almost perfect) matchings are related.

To our knowledge, the first result relating the minimum degree and the
existence of a large (though, far from perfect) matching in a k-graph was
obtained by Bollobás, Daykin, and Erdős in [4]. It was further extended to
perfect matchings by Daykin and Häggkvist in [7].

Definition 1.3. Let d, k, r, and n satisfy 1 ≤ d ≤ k − 1 and k divide
n − r. We define mr

d(k, n) to be the smallest integer m such that every
n-vertex k-graph H satisfying δd(H) ≥ m contains a matching M with
∣

∣V (M)
∣

∣ = n− r.

In Sections 2 and 3, respectively, we summarize what we know about the
parameters hld(k, n) and mr

r(k, n). We present both, asymptotic and exact
results, some with sketches of proofs, as well as pose several open questions.
We also discuss the k-partite case and some other related topics.

Throughout the paper we will be giving a particular interest to the
cases when d = k − 1, l = k − 1, and/or r = 0. We will be then
suppressing the subscript or the superscript, or both, respectively. For
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4 V. Rödl and A. Ruciński

instance, md(k, n) = h0d(k, n) will stand for the smallest integer m such that
every k-graph on n vertices with n divisible by k and δd ≥ m contains a
perfect matching. For future references we summarize our notation here.

Summary of notation: For n divisible by k − l

• hld(k, n) = min
{

h : δd(H) ≥ h ⇒ H contains a Hamiltonian l-cycle
}

• hl(k, n) = hlk−1(k, n)

• hd(k, n) = hk−1
d (k, n)

• h(k, n) = hk−1
k−1(k, n),

and for n− r divisible by k

• mr
d(k, n) = min{m : δd(H) ≥ m ⇒ H contains a matching M ,

∣

∣V (M)
∣

∣ = n− r}
• mr(k, n) = mr

k−1(k, n)

• md(k, n) = m0
d(k, n)

• m(k, n) = m0
k−1(k, n).

The parameters hld(k, n) and mr
d(k, n) are often referred to as Dirac-type

thresholds. So far, all known results and conjectures indicate that the Dirac
thresholds are asymptotic to c

(

n−d
k−d

)

, for some 0 < c < 1. Therefore, the
following observation can be useful.

Remark 1.4. Since, by simple averaging,

δd−1(H) ≥ n− d+ 1

k − d+ 1
× δd(H),

we have for every c > 0 that

δd(H) ≥ c

(

n− d

k − d

)

implies δd−1(H) ≥ c

(

n− (d− 1)

k − (d− 1)

)

.

Consequently,

hld(k, n) ≥ c

(

n− d

k − d

)

implies hld−1(k, n) ≥ c

(

n− (d− 1)

k − (d− 1)

)
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and

hld−1(k, n) ≤ c

(

n− (d− 1)

k − (d− 1)

)

implies hld(k, n) ≤ c

(

n− d

k − d

)

,

and similar implications hold for the parameter mr
d(k, n) as well.

2. Hamilton Cycles

For most of this section we will deal with the case d = k − 1 and l = k − 1
and set h(k, n) = hk−1

k−1(k, n) for convenience (see Summary of notation in
Section 1). Also for convenience, we will call Hamiltonian (k−1)-cycles just
Hamiltonian cycles, and k-graphs containing such cycles – Hamiltonian.

In 1952 Dirac [8] proved that h(2, n) = ⌈n/2⌉. The two following graphs
show that this result is tight: the union of two complete graphs 2K⌈n/2⌉

(with one vertex in common when n is odd) and the complete bipartite
graph K⌈n/2⌉−1,⌊n/2⌋+1. The first Dirac-type result for hypergraphs was
obtained by Katona and Kierstead who proved in [13] that

⌊

n− k + 3

2

⌋

≤ h(k, n) ≤
(

1− 1

2k

)

n+Ok(1).

As a proof of the lower bound they provided the following construction of
an extremal k-graph H0.

Construction 2.1 ([13]). Let V = V ′ ∪ {v}, |V | = n ≥ k2 + 1. Split
V ′ = X ∪ Y , where, |X| = ⌊n−1

2 ⌋ and |Y | = ⌈n−1
2 ⌉. The edges of H0 are

all k-element subsets S of V such that |X ∩ S| 6= ⌊k
2⌋ or v ∈ S. It is shown

in [13] that H0 is not Hamiltonian, while δk−1(H0) ≥ ⌊n−k+1
2 ⌋. Thus,

h(k, n) ≥ δk−1(H0) + 1 =

⌊

n− k + 1

2

⌋

+ 1 =

⌊

n− k + 3

2

⌋

.

Katona and Kierstead (implicitly) conjectured that their lower bound is
the correct value of h(k, n). Recently, this has been confirmed for k = 3,
first asymptotically [22], then exactly [27], solving also the corresponding
Hamiltonian path problem.
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6 V. Rödl and A. Ruciński

Theorem 2.2 ([27]). Let H be a 3-graph on n vertices, where n is suffi-
ciently large.

1. If δ2(H) ≥ ⌊n/2⌋ then H has a Hamiltonian cycle. Moreover, for
every n there exists a 3-graph Hn such that δ(Hn) = ⌊n/2⌋ − 1 and
Hn does not have a Hamiltonian cycle. In other words, h(3, n) = ⌊n

2⌋.
2. If δ2(H) ≥ ⌈n/2⌉ − 1 then H has a Hamiltonian path. Moreover, for

every n there exists a 3-graph Hn such that δ(Hn) = ⌈n/2⌉ − 2 and
Hn does not have a Hamiltonian path.

An analogous question regarding the Dirac threshold for Hamiltonian
cycles in k-graphs remains open.

Problem 2.3. Prove that h(k, n) = ⌊n−k+3
2 ⌋ for all k ≥ 4.

As a step toward solving this problem, it was proved in [24] that
h(k, n) ∼ 1

2n, that is, h(k, n) =
(

1 + o(1)
)

1
2n, for all k ≥ 3.

Theorem 2.4 ([24]). Let k ≥ 3, γ > 0, and let H be a k-graph on n-
vertices, where n is sufficiently large. If δk−1(H) ≥ (1/2 + γ)n edges, then
H is Hamiltonian. In other words, h(k, n) ∼ 1

2n.

A sketch of the proof of Theorem 2.4 from [24] is presented in Section 2.2.

2.1. Dirac thresholds for loose(r) Hamiltonian cycles

For two integers, a and b, let us write a|b if a divides b. As an (almost)
immediate consequence of Theorem 2.4 we can asymptotically determine
the value hl(k, n) of the Dirac threshold for Hamiltonian l-cycles for all
1 ≤ l ≤ k − 1 satisfying the congruence (k − l) | k.

Corollary 2.5 ([19]). If (k − l) | k and (k − l) | n, then hl(k, n) ∼ 1
2n.

Proof. We will show first that hl(k, n) ≤ (12 + o(1))n. Since (k− l) | k and

(k − l) | n, every Hamiltonian (k − 1)-cycle Ck,k−1
n contains a Hamiltonian

l-cycle Ck,l
n (indeed, take every (k − l)th edge of Ck,k−1

n ). Thus, we have

hl(k, n) ≤ h(k, n) =

(

1

2
+ o(1)

)

n,

where the equation follows from Theorem 2.4.
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For the lower bound, assume first that, in addition to (k − l) | k and

(k − l) | n, we also have k|n. Then, by taking every k
k−l th edge of Ck,l

n , we

can find a perfect matching Ck,0
n inside Ck,l

n . Thus, in this case,

m(k, n) = h0(k, n) ≤ hl(k, n).

By the lower bound (2) given in Section 3 we know that

m(k, n) ≥ 1

2
n− k,

which completes the proof if k|n.

If k does not divide n then still hl(k, n) ∼ 1
2n because hl(k, n) ≥ 1

2n− k
by a simple argument from [19] which uses the following constructions.

Construction 2.6. Let H1 = (V,E) where V = A ∪ B, 1
2n − 1 ≤ |A| ≤

1
2n+

1
2 , |A| is odd, and E consists of all e ∈

(

V
k

)

such that |e∩V | is even. Let
H2 = (V,E) where V = A ∪ B, |A| = ⌈1

2n⌉, and E consists of all e ∈
(

V
k

)

such that |e∩V | is odd. It is easy to check that δk−1(Hi) ≥ n/2−k, i = 1, 2.
Moreover, it follows by a parity argument that H1 contains no Hamiltonian
l-cycle if k

k−l is odd, while H2 contains no Hamiltonian l-cycle if k
k−l is even

and n
k−l is odd. The remaining case, when k

k−l and n
k−l are even, can be

reduced to one of the two previous cases.

In the meantime, the value of hl(k, n) has been determined asymptoti-
cally for all 0 ≤ l ≤ k − 1, that is, also when k − l does not divide k. First,
Kühn and Osthus proved in [17] that h1(3, n) ∼ 1

4n and conjectured that
h1(k, n) ∼ 1

2(k−1)n. This conjecture was proved in [14], and independently

in [12], where Hán and Schacht generalized it further, obtaining the asymp-
totic formula hl(k, n) ∼ 1

2(k−l)n for all 1 ≤ l < 1
2k. In turn, Hán and Schacht

conjectured the right result for all values of l which was finally proved by
Kühn, Mycroft, and Osthus in [15].

Theorem 2.7 ([15]). If k − l does not divide k and (k − l) | n, then

hl(k, n) ∼ n

⌈ k
k−l⌉(k − l)

.

(Note that ⌈ k
k−l⌉ = 2 for l < k/2.)
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8 V. Rödl and A. Ruciński

So, the situation is quite peculiar as our next example shows. Let k = 10.
Then the asymptotic values of hl(10, n) for l = 0, 1, 2, . . . , 9 are 1

2 ,
1
18 ,

1
16 ,

1
14 ,

1
12 ,

1
2 ,

1
12 ,

1
12 ,

1
2 ,

1
2 .

The lower bound in the above theorem comes from the following con-
struction which sheds some light on the origin of the cumbersome formula.

Construction 2.8. Let H3 = (V,E) where V = A ∪B,

|A| =
⌈

n

⌈ k
k−l⌉(k − l)

⌉

− 1 and E =

{

e ∈
(

V

k

)

: |e ∩A| 6= ∅
}

.

It follows that δk−1(H3) = |A|. Recall that every Hamiltonian l-cycle has
m = n/(k − l) edges and maximum degree ∆ = ⌈ k

k−l⌉. If there was a
Hamiltonian l-cycle in H3, then A would be its vertex cover. However,

|A| ×∆ =

(⌈

n

⌈ k
k−l⌉(k − l)

⌉

− 1

)

×
⌈

k

k − l

⌉

< n/(k − l),

a contradiction.

It seems that it will be very hard to pinpoint the value of hl(k, n)
precisely.

Problem 2.9. Determine the exact value of hl(k, n) for all k ≥ 3, 0 ≤ l ≤
k − 1 and all (sufficiently large) n.

So far this has been solved for k = 3, l = 2 in [27] (see Theorem 2.2
above) and for k ≥ 3, l = 0 in [23] (see Theorem 3.4 in Section 3).

2.2. An outline of the proof of Theorem 2.4

In this section we assume that δk−1(H) ≥ (1/2 + γ)n for γ > 0 and
sufficiently small with respect to k. The proof in [24] is built around the
notion of an absorbing path. A k-uniform (tight) path P of length s is a
k-graph with s vertices and s − k + 1 edges whose vertices can be ordered
v1, . . . , vs in such a way that every k consecutive vertices form an edge
(each path has exactly two such orderings). The sequences (v1, . . . , vk−1)
and (vs, . . . , vs−k+1) are called the ends of P , and we say that P connects
them.
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Lemma 2.10 (Absorbing Lemma, [24]). There exists a path A in H
(called absorbing) with

∣

∣V (A)
∣

∣ ≤ 16kγk−1n such that for every subset
U ⊂ V \ V (A) of size |U | ≤ 2k−4γ2kn there is a path AU in H with
V (AU ) = V (A) ∪ U and such that AU has the same ends as A.

In other words, the above lemma asserts that there is one, not too long
path such that every not too large subset of vertices can be “absorbed” into
the “interior” of this path.

The idea of the proof of Theorem 2.4 can be described in three steps
(see Figure 2).

Outline of proof of Theorem 2.4.

1. Fix an absorbing path A guaranteed by Lemma 2.10.

2. Build a cycle C of length at least n− 2k−4γ2kn containing A.

3. Applying the absorbing property of A to the set U = V (H) \ V (C),
insert U into A, obtaining a Hamiltonian cycle CHAM in H.

Fig. 2. A bird’s view of the proof of Theorem 2.4

Below we explain how these three steps are implemented.

Step 1. The absorbing path will be constructed from absorbing se-
quences.

Definition 2.11. Given a vertex v, we say that a (2k−2)-element sequence
of vertices x = (x1, . . . , x2k−2) absorbs v in H if

• for every i = 1, . . . , k − 1 we have {xi, xi+1, . . . , xi+k−1} ∈ H (that is,
x spans a path in H) and

• for every i = 1, . . . , k we also have {xi, xi+1, . . . , xi+k−2, v} ∈ H (that
is, x spans a (k − 1)-uniform path in the link H(v) of v in H).
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10 V. Rödl and A. Ruciński

If x is actually a segment of a path P and v is not a vertex of P , then P
can “absorb” v by replacing the edges {xi, xi+1, . . . , xi+k−1}, i = 1, . . . , k−1,
by {xi, xi+1, . . . , xi+k−2, v}, i = 1, . . . , k. This way, the segment x of P is
replaced by the new segment x′ = (x1, . . . , xk−1, v, xk, . . . , x2k−2).

A key feature of absorbing sequences is that there are plenty of them.

Claim 2.12. For every v ∈ V (H), there are at least

2k−2γk−1n2k−2

sequences absorbing v in H.

Proof. While constructing a v-absorbing sequence x = (x1, . . . , x2k−2),
there is no restriction on the vertices x1, . . . , xk−2 other than they should be
different from v. Thus, x1, . . . , xk−2 can be chosen in precisely (n− 1)k−2

ways. By the degree assumption applied to the set {x1, . . . , xk−2, v}, there
are at least (1/2 + γ)n vertices xk−1 such that {x1, . . . , xk−1, v} ∈ H.

By the degree assumption applied to the sets {x1, . . . , xk−1} and
{x2, . . . , xk−1, v}, there are at least 2γn + k − 2 > 2γn vertices xk such
that

{x1, . . . , xk} ∈ H and {x2, . . . , xk, v} ∈ H.

(See Fact 3.1 in [24] for details.) Similarly, for each i = k + 1, . . . , 2k − 2,
there are at least 2γn+ k − 2 vertices xi such that

{xi−k+1, . . . , xi} ∈ H and {xi−k+2, . . . , xi, v} ∈ H.

Among them, at least 2γn+ k− 2− (i− k) ≥ 2γn satisfy xi 6= x1, . . . , xi−k.
Altogether, this implies that there are at least

(n− 1)(k−2)(1/2 + γ)n(2γn)k−1 > 2k−2γk−1n2k−2

sequences x = (x1, . . . , x2k−2) absorbing v.

The construction of an absorbing path consists of two phases:

1(a) Selecting a small number of disjoint, absorbing sequences such that
each vertex is absorbed by many of them;

1(b) Connecting these sequences into one path.

Rödl–Ruciński 10 16.6.2010 17:17
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Phase 1(a). We select randomly, with probability p = γk+1/n2k−3,
a family R of (2k− 2)-element sequences x of vertices. By standard proba-
bilistic argument and by Claim 2.12 it follows that with positive probability
R contains a subfamily F of at most 2γk+1n disjoint sequences such that for
every vertex v at least 2k−4γ2kn of these sequences are v-absorbing (see [24]
for details).

Phase 1(b). This phase is executed with the help of the connecting
lemma from [24], the proof of which is omitted here.

Lemma 2.13 (Connecting Lemma, [24]). If δk−1(H) ≥ (1/2 + γ)n then,
for every two disjoint (k − 1)-element sequences of vertices of H, there is a
path in H of length at most 2k/γ2 which connects them.

We use Lemma 2.13, but with γ/2 instead of γ, to connect, one by one,
all sequences of F obtaining an absorbing path. This is possible, because
the whole path will have at most

|F| × (8k/γ2) ≤ 2γk+1n× (8k/γ2) = 16kγk−1n

vertices, and thus, at any given time of the connecting procedure, the
subhypergraph H∗ spanned by the remaining vertices will have

δk−1(H
∗) ≥ (1/2 + γ)n− 16kγk−1n > (1/2 + γ/2)n > (1/2 + γ/2)

∣

∣V (H∗)
∣

∣ ,

for sufficiently small γ > 0.

Step 2. The process of finding a long cycle containing A, can be broken
up into three phases:

2(a) Selecting a small “reservoir set” R such that |R| = 2k−5γ2kn, R ∩
V (A) = ∅, and H[R] inherits the degree property of the entire k-
graph H, scaled down to its size.

2(b) Constructing, via The Weak Regularity Lemma, a constant size col-
lection of long, disjoint paths in H ′ = H[V \

(

V (A) ∪ R
)

], covering
all but at most 2k−5γ2k

∣

∣V (H ′)
∣

∣ vertices of H ′.

2(c) Connecting these paths and the absorbing path A into one cycle,
utilizing a small chunk of R.

Phase (a) is necessary, since toward the end of the connecting phase (c),
there will be only few vertices left outside the path under construction, and
thus available for connecting. We make sure, however, that this residual
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12 V. Rödl and A. Ruciński

part of H ′ will contain a small “copy” of H, namely H[R] or its large
portion H[R′], R′ ⊂ R, and so, we will be in position to apply an analog of
Lemma 2.13 to it.

Phase 2(a).

Lemma 2.14 (Reservoir Lemma). There exists a subset R ⊂ V \ V (A) of
size |R| =

⌊

2k−5γ2kn
⌋

such that for every (k − 1)-element set S ⊂ V we
have

(1)
∣

∣NH(S) ∩R
∣

∣ ≥ (1/2 + γ/2)|R|.

Proof. Select R randomly. By Chernoff’s bound, with high probability, the
set R will satisfy (1).

Phase 2(b).

Lemma 2.15 (Path Cover Lemma). All but at most 2k−5γ2k
∣

∣V (H ′)
∣

∣

vertices of H ′ = H[V \
(

V (A) ∪ R
)

] can be covered by at most m = m(γ)
vertex-disjoint paths P1, . . . , Pm.

Proof. See [24].

Phase 2(c). In this final phase of Step 2, we use a lemma which was
implicitly proved in [24].

Lemma 2.16 (Restricted connecting Lemma). Let R be as in Lemma 2.14.
Then for every two disjoint, (k − 1)-element sequences (x1, . . . , xk−1) and
(y1, . . . , yk−1) of vertices of H, there is a path P in H of length at most
8k/γ2 + 2(k − 1), which connects them and such that

V (P ) \ {x1, . . . , xk−1, y1, . . . , yk−1} ⊂ R.

Proof. By property (1) there exist distinct vertices u1, . . . , uk−1 ∈ R
and v1, . . . , vk−1 ∈ R such that Qx = (x1, . . . , xk−1, u1, . . . , uk−1) and
Qy = (y1, . . . , yk−1, v1, . . . , vk−1) form paths in H. Now, we can apply
Lemma 2.13 with γ/2 to the k-graph H[R] and the sequences (u1, . . . , uk−1)
and (v1, . . . , vk−1), obtaining a path Q of length 8k/γ2 connecting them.
Then, the path P = QxQQy connects (x1, . . . , xk−1) with (y1, . . . , yk−1)
and has length

∣

∣V (Q)
∣

∣ + 2(k − 1).

Now, we are ready to prove the main lemma of this phase.
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Lemma 2.17 (Long Cycle Lemma). There is in H a cycle C of length at
least n− 2k−5γ2kn containing A.

Proof. We perform m + 1 applications of Lemma 2.16, with γ/3 instead
of γ/2, to large subsets R′ ⊆ R, and connect all paths P1, . . . , Pm, as well
as the absorbing path A, into one long cycle C in H. Suppose that at
some point we are to connect an end (x1, . . . , xk−1) of one path with an end
(y1, . . . , yk−1) of another path. Let us denote the yet unused portion of R by
R′. Since we connect only O(1) times, each time using only O(1) vertices
of R, throughout the procedure we maintain that |R′| = |R| − O(1) >
(1 − γ/6)|R|, and thus, by property (1) of R, for every (k − 1)-element set
S ⊂ V we still have

∣

∣NH(S) ∩R′
∣

∣ ≥ (1/2 + γ/2)|R| −
(

|R| − |R′|
)

> (1/2 + γ/3)|R|

> (1/2 + γ/3)|R′|.
Hence, we apply Lemma 2.16 with γ/3 instead of γ/2, and so, the obtained
connecting paths are of lengths at most 18k/γ2 + 2(k − 1).

Let T be the set of vertices of H ′ not covered by the paths P1, . . . , Pm.
Only a subset R′ of R and the set T are uncovered by the cycle C. The
union of these two sets has size at most |R|+ |T | ≤ 2k−4γ2kn (see Figure 3).

Fig. 3. Phase 2(c) of the proof of Theorem 2.4

Step 3. Let U = R′ ∪ T . Note that |U | ≤ 2k−4γ2kn. Let AU be the
path as defined in Lemma 2.10. Then, replacing A with AU in C yields a
Hamiltonian cycle in H.

This completes the outline of the proof of Theorem 2.4.
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2.3. Hamilton cycles in hypergraphs with large vertex minimum
degree

There are virtually no results on hld(k, n) for d ≤ k − 2. Here we consider
the smallest unsolved case: k = 3 and d = 1.

Two constructions set the bound h1(3, n) ≥ (59 + o(1))
(

n−1
2

)

. One is
obtained by modifying the hypergraph H0 from Construction 2.1. We now
take V = X ∪ Y , where |Y | ∼ 2|X| (instead of |Y | ∼ |X|) and all triples S
of vertices with |S ∩X| 6= 1 as the edges. Let H ′

0 be the obtained 3-graph.
Then

δ1(H
′
0) = max

((|Y | − 1

2

)

+

(|X|
2

)

,

(|X| − 1

2

)

+
(

|X| − 1
)

|Y |
)

∼ 5

9

(

n− 1

2

)

.

and, likewise in H0, there is no Hamiltonian cycle in H ′
0.

The other construction is very similar to the hypergraph H3 described
in Construction 2.8. We define H4 as a hypergraph on the vertex set
V = X ∪ Y , where |X| = n/3 − 1, and with the edge set consisting of
all triples intersecting X. Then, again, δ1(H4) ∼ 5

9

(

n−1
2

)

and H4 has no
Hamiltonian cycle.

Note that (for n divisible by 3) the hypergraph H4 does not even have a
perfect matching. As we will see in Section 3 (see Theorem 3.4 below, proved
in [11]), the threshold m1(3, n) for the existence of a perfect matching is, in
fact, (59 + o(1))

(

n−1
2

)

. Judging by the similarities between Dirac thresholds
for perfect matchings and Hamiltonian cycles in various situations, it was
tempting to conjecture that h1(3, n) ∼ m1(3, n). However, even showing
that h1(3, n) ≤ c

(

n−1
2

)

for some c < 1 does not seem to be completely trivial.
In our preliminary reconnaissance of this problem, by adapting the original
proof from [24] and using Theorem 3.4 along the way, we were able to obtain
only the upper bound h1(3, n) ≤ (1112 + γ)

(

n−1
2

)

. Very recently we learned
from Endre that he knows how to prove that, indeed, h1(3, n) ∼ m1(3, n).

Endre’s insight and the existing results showing that h(k, n) ∼ m(k, n)
for all k suggest that the same is true in general.

Conjecture 2.18. For all 1 ≤ d ≤ k − 1,

hd(k, n) ∼ md(k, n).
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Note that formula (4) and Conjecture 3.6 in Section 3.2 specify the value
of md(k, n).

2.4. The k-partite case

Unlike matchings (see the next section) there are very few results on the
Hamiltonicity of partite hypergraphs. For graphs, Moon and Moser [20]
extended Dirac’s theorem to bipartite graphs. Later, the authors of [5]
provided a generalization to balanced k-partite graphs. Here we treat briefly
the case of k-partite k-graphs, k ≥ 3.

A k-graph H is k-partite if its vertices can be partitioned into k classes,
V (H) = V1 ∪ · · · ∪ Vk, in such a way that for every edge e ∈ H and each
i = 1, . . . , k, we have |e ∩ Vi| = 1. Given such a partition, we call a set
of vertices S legal if for each i = 1, . . . , k, |S ∩ Vi| ≤ 1. We denote by
δ′(H) := δ′k−1(H) the minimum of degH(S) taken over all legal (k − 1)-
tuples S in H.

An adaptation of the proof of Theorem 2.4 leads to the following result,
which, in turn, implies Theorem 2.4 by taking a random k-partition.

Proposition 2.19. Let k ≥ 3, γ > 0, and let H be a k-partite k-graph on
kn vertices with a given equitable partition V1, . . . , Vk, |Vi| = n, where n is
sufficiently large. If δ′k−1(H) ≥ (1/2 + γ)n edges, then H is Hamiltonian.
Moreover, there is a k-partite k-graph H0 on kn vertices and with an
equitable partition such that δ′k−1(H0) ≥ ⌊1

2n⌋ and H0 does not have a
Hamiltonian cycle.

To obtain H0, we modify Construction 2.1.

Construction 2.20. Given k and n, let X = X1∪· · ·∪Xk, Y = Y1∪· · ·∪Yk,
and Vi = Xi ∪ Yi, i = 1, . . . , k, where all sets Xi and Yi are pairwise
disjoint, ⌊kn/2⌋ ≤ |X|, |Y | ≤ ⌈kn/2⌉, |X|+ |Y | = kn, and, for i = 1, . . . , k,
⌊n/2⌋ ≤ |Xi|, |Yi| ≤ ⌈n/2⌉, and |Vi| = n.

Let H0 be a k-graph with V = V1 ∪ · · · ∪ Vk = X ∪ Y whose edge
set consists of all k-element subsets S of V such that |X ∩ S| 6= ⌊k

2⌋ and
∣

∣S ∩ (Vi)
∣

∣ ≤ 1, i = 1, 2, . . . , k. Being a subhypergraph of the k-graph
from Construction 2.1, this new H0 is not Hamiltonian either. Moreover,
for every (k − 1)-element subset S of V , if |X ∩ S| ∈ {⌊k

2⌋− 1,⌊k
2⌋}, then

degH0
(S) ∈ {|Xi|, |Yi|} =

{

⌊n/2⌋, ⌈n/2⌉
}

, while if |X∩S| /∈ {⌊k
2⌋−1,⌊k

2⌋}
then degH0

(S) = |Vi| = n, where i is the unique index such that S ∩Vi = ∅.
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16 V. Rödl and A. Ruciński

The proof of the main part of Proposition 2.19 follows the lines of the
proof of Theorem 2.4 from [24], outlined in Section 2.2. It only needs to be
substantially altered in the construction of the absorbing path. Below we
provide details of this modified absorbing scheme.

Note that on every path or cycle the cyclical order in which the first edge
meets the sets V1, . . . , Vk is maintained by all subsequent edges. Without
loss of generality, we choose V1, V2, . . . , Vk as the canonical order, and will be
assuming that the absorbing path we build as well as the final Hamiltonian
cycle will follow that order.

We will use two different absorbing strategies depending on whether a
given set of k vertices which is to be absorbed forms an edge in H or not.

Fig. 4. Absorbing sequence, k = 4, the partition sets marked by different symbols

Definition 2.21. For an edge e = {v1, . . . , vk} ∈ H, where vi ∈ Vi,
i = 1, . . . , k, we say that a (2k − 2)-element sequence of vertices x =
(x1, . . . , x2k−2), absorbs e in H if

(a) x1 ∈ V2, x2 ∈ V3, . . . , xk−1 ∈ Vk, xk ∈ V1, . . . , x2k−2 ∈ Vk−1,

(b) for every i = 1, . . . , k− 1, we have {xi, xi+1, . . . , xi+k−1} ∈ H (that is,
x spans a path in H),

(c) for every i = 1, . . . , k − 1, we have {xi, . . . , xk−1, v1, . . . , vi} ∈ H, and

(d) for every i = 2, . . . , k, we have {vi, . . . , vk, xk, . . . , xk−2+i} ∈ H. (Prop-
erties (c) and (d) together imply that the sequence x′ = (x1, . . . , xk−1,
v1, . . . , vk, xk, . . . , x2k−2) spans a path in H.)

If x is actually a segment of a path P and v1, v2, . . . , vk are not on P ,
then P can “absorb” all these vertices by replacing the segment x with the
new segment x′ (see Fig. 4).

In the final stage of the proof of Proposition 2.19 the above absorbing
technique can be used for as long as there are edges induced by the vertices
remaining outside the long cycle. When the set of such vertices becomes
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independent, we use a swapping device which will exchange some k vertices
outside the cycle with a set of k vertices which form an edge of H, allowing
us to use again the absorbing device and absorb the released vertices back
into the cycle.

Fig. 5. Swapping sequence, k = 4, the partition sets marked by different symbols

Definition 2.22. For a set S = {v1, . . . , vk} ⊂ V (H), where vi ∈ Vi,
i = 1, . . . , k, we say that a (k2 + 2k − 2)-element sequence of vertices
x = (x1, . . . , xk2+2k−2), is edge-swapping for S if

(a) x1 ∈ V2, x2 ∈ V3, . . . , xk−1 ∈ Vk, xk ∈ V1, . . . , xk2+2k−2 ∈ Vk−1,

(b) the sequence x spans a path P1 in H,

(c) the sequence x with each xik+i−1 replaced by vi, i = 1, . . . , k, spans a
path P2 in H, and

(d) e0 := {xk, x2k+1, . . . , xk2+k−1} ∈ H.

If x is actually a segment of a path P and v1, v2, . . . , vk are not on P ,
then P can “swap” the vertices xk, x2k+1, x3k+2 . . . , xk2+k−1 for v1, v2, . . . , vk
by replacing P1 with P2, and thus, releasing the vertices of e0 from P (see
Fig. 5).

So, our absorbing strategy is as follows: create two, disjoint, not too
long paths: an absorbing path A containing many absorbing sequences for
each edge of H, and a swapping path B containing many edge-swapping
sequences for each k-element set of vertices of H.

To successfully complete this task all we need are two statements
analogous to Claim 2.12. Let us begin with counting, for a given edge
{v1, . . . , vk} ∈ H, the number of absorbing sequences.

Claim 2.23. For every edge {v1, . . . , vk} ∈ H, there are at least γk−1n2k−2

absorbing sequences in H.
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Proof. As for each i = k−1, k−2, . . . , 1, degH(xi+1, . . . , xk−1, v1, . . . , vi) ≥
(1/2 + γ)n, there are at least (n/2)k−1 choices of xk−1, . . . , x1, selected in
that order. Then, each of xk, . . . , x2k−2 must be a common neighbor of two
(k−1)-tuples of already existing vertices, and so there are at least, roughly,
(2γn)k−1 choices of these vertices. Altogether, we have at least γk−1n2k−2

such sequences.

Claim 2.24. For every set S = {v1, . . . , vk} ⊂ V (H), there are at least
2k

2−kγk
2

nk2+2k−2 edge-swapping sequences in H.

Proof. For a given set S = {v1, . . . , vk} ⊂ V (H), we will proceed systemat-
ically and count, for each i = 1, . . . , k2+2k−2, the number of choices of xi,
given that x1, . . . , xi−1 have been already selected. There are, roughly, n
choices for each of x1, . . . , xk−2 as there are no constraints on them. The
vertex xk−1 must be a neighbor of {x1, . . . , xk−2, v1} and then, xk must be
a neighbor of {x1, . . . , xk−1}, yielding at least n/2 choices of each. The
vertices xk+1, . . . , x2k−1 are each a common neighbor of two (k − 1)-tuples
of already existing vertices, one on the path P1, the other on P2. This
is also true for x2k, although for a different reason. Indeed, the paths P1

and P2 run together between xk+1 and x2k, however x2k must be a com-
mon neighbor of {xk+1, . . . , x2k−1} and {xk+2, . . . , x2k−1, v2}. Then, x2k+1

has to be a neighbor of only one (k − 1)-tuple (the one on P1, namely
{xk+1, . . . , x2k}). This pattern continues for the next k − 2 intervals of
length k + 1, until we reach xk2+k−1 which, in addition, has to be a neigh-
bor of xk, x2k+1, . . . , xk2−2. It is crucial for the success of our construction
that no vertex needs to be a common neighbor of three or more already
existing (k − 1)-tuples.

Hence, altogether, there are at least

nk−2 × (n/2)k × (2γn)k
2

= 2k
2−kγk

2

nk2+2k−2

choices of the entire edge-swapping sequence.

The rest of the proof of a k-partite version of the absorbing lemma follows
mutatis mutandis the proof from [24] described in Section 2.2, except that
we need to be careful to maintain the canonical order on all paths we build.
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3. Perfect Matchings

There are several results on Dirac-type degree thresholds for perfect match-
ings in k-graphs. To some extent, they resemble the results for Hamiltonian
cycles and are often obtained by methods based on similar ideas, most no-
tably, the idea of absorption. In this section we give an overview of such
results.

Recall that the Dirac-type threshold mr
d(k, n) has been introduced in

Defintion 1.3 and that we suppress the subscript d when d = k−1 as well as
we suppress the superscript r when r = 0, that is, when we consider perfect
matchings (see the Summary of notation in Section 1).

For graphs, an easy argument shows that m(2, n) = n/2. Since, for
n divisible by k, every Hamiltonian cycle contains a perfect matching, it
follows from [24] that m(k, n) ≤ n/2 + o(n). In [16], Kühn and Osthus
sharpened this bound to m(k, n) ≤ n/2 + 3k2

√
n logn, using a result for

the k-partite case which they had shown first (see Subsection 3.4). This
was further improved in [23] to m(k, n) ≤ n/2 + C log n, using the idea of
absorption. The authors of [25] found a fairly simple proof of the inequality
m(k, n) ≤ n/2+k/4, based on a beautiful idea of Aharoni, Georgakopoulos,
and Sprüssel [1] (see Subsection 3.4).

This last bound is very close to the true value of m(k, n). Indeed,
constructions presented in [26] yield the lower bound

m(k, n) ≥ t(n, k) :=



























n/2 + 3− k if k/2 is even and n/k is odd,

n/2 + 5/2− k if k is odd and (n− 1)/2 is odd,

n/2 + 3/2− k if k is odd and (n− 1)/2 is even,

n/2 + 2− k otherwise.

(2)

Moreover, the main result of [26] shows that, in fact, there is equality
in (2).

Theorem 3.1 ([26]). For all k ≥ 2, m(k, n) = t(k, n), where t(k, n) is given
by (2).

When comparing with Problem 2.3, we see that the conjectured Dirac
threshold for a Hamiltonian cycle and the above threshold for a perfect
matching differ only by an additive term of about k/2. In fact, we know
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that they coincide for k = 2 and differ by at most one for k = 3 (see
Theorem 2.2).

To prove Theorem 3.1, two cases are separately considered in [26]. When
H is “close” to one of the critical k-graphs yielding the lower bound (2),
one can find a perfect matching in H by “brute force” If, on the other hand,
H is far from the critical k-graphs, we apply a version of the absorbing
technique.

The absorbing configurations used in [23] and [26] (as well as in [11]),
although different from each other, follow the same pattern: given a set
S ⊂ V (H), |S| = k, a matchingM1 is S-absorbing if the vertex set V (M1)∪S
spans in H a matching M2 of size |M1| + 1. Consider a matching M and
a set S, S ∩ V (M) = ∅. If M contains an S-absorbing matching M1, then
one can absorb S into M by swapping M1 for M2.

The idea of the proofs in [23] and in the “far-from-critical” case in [26]
is now transparent and similar to the idea described in the Outline of the
proof of Theorem 2.4:

• Find a relatively small matchingMA such that for every set S ⊂ V (H),
|S| = k, there is an S-absorbing matching in MA.

• Build a matching M ′ in H ′ = H − V (MA) which leaves only a set S
of k vertices unmatched.

• Apply the absorbing procedure to S.

Building the almost perfect matching M ′ requires itself a version of
the absorbing technique which works for as long as there are more than
k vertices uncovered. Adding the last edge represent a more significant
difficulty. In the next subsection we will see that if we allow even one
vertex to be uncovered the threshold drops significantly. A matching of size
n/k − k + 2 can be, however, constructed by a standard greedy approach.

3.1. Almost perfect matchings

Here we present results aboutmr(k, n) for r > 0. The following construction
yields the lower bound

mr(k, n) ≥ n− r

k

for all r > 0.
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Construction 3.2. With n = r (mod k), let A and B be disjoint sets of
sizes |A| = n−r

k − 1 and |B| = n− |A|. Let Hr be a k-graph on V = A ∪B
consisting of all k-element subsets S of vertices which intersect A. Then
the largest matching of Hr has size at most |A|, and thus, it has at most
k|A| < n− r vertices.

In [26] we established that

(3) mr(k, n) =
n− r

k

holds for all r ≥ k(k − 2). This was shown by a fairly simple argument
involving a greedy algorithm.

Also, using a version of the absorption method, with the sets S of size
k + 1, it was proved in [26] that for all r > 0

n− r

k
≤ mr(k, n) ≤ n

k
+O(logn).

This result stands in a striking contrast with Theorem 3.1, where the
threshold is around n/2. Hence, from the Dirac threshold perspective, an
almost perfect matching appears much sooner than a prefect one.

Note that for 0 < r < k we have n−r
k = ⌊n

k⌋ which is the size of the
largest matching one can possibly have if n is not divisible by k. We feel
that the O(logn) term, brought in by the technicalities of the absorption
method, should not be there.

Problem 3.3. Prove (or disprove) that mr(k, n) = ⌊n
k⌋ for all 0 < r < k.

In particular, is it true that if n 6= 0 (mod 3) and δ2(H) ≥ ⌊n
3⌋ then there

is a matching in H of size ⌊n
3⌋?

3.2. The parameter mr
d(k, n) for 1 ≤ d ≤ k − 2

Pikhurko [21] proved that for all d ≥ k/2

(4) md(k, n) ∼
1

2

(

n− d

k − d

)

.

His proof is in part based on the ideas from [16]. Similarly as in [16] he
proved first a related result for k-partite k-graphs (see Subsection 3.4).
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Moreover, in view of Remark 1.4 it was sufficient to prove the lower bound
in (4) only for d = k − 1 and the upper bound in (4) only for d = ⌈k/2⌉.

The case d < k/2 seems to be much harder. The constructions yielding
(2) together with Construction 3.2 applied with r = 0 give the following,
general lower bound:

(5) md(k, n) ≥
(

max

{

1

2
, 1−

(

k − 1

k

)k−d
}

+ o(1)

)

(

n− d

k − d

)

.

As for the upper bound, Hàn, Person, and Schacht [11], by a similar
method as in [21], proved first that for all 0 ≤ d ≤ k − 1,

(6) m
k(d−1)
d (k, n) ≤

(

k − d

k
+ o(1)

)(

n− d

k − d

)

.

That is, if for a k-graph H, δd(H) is at least as large as the R-H-S of (6) then
H contains a matching covering all but k(d− 1) vertices. Then, combining
(6) with the absorption method, they improved (6) in the lower range of d
by showing that for 1 ≤ d < k/2

(7) md(k, n) ≤
(

k − d

k
+ o(1)

)(

n− d

k − d

)

.

Note that for d = k−1, (6) is asymptotically the same result as (3). For
d = 1, on the other hand, (6) is asymptotically equivalent to an old result
of Daykin and Häggvist [7].

In the same paper [11] the authors improved (7) in the smallest case
of k = 3, d = 1, achieving asymptotically the lower bound (5):

Theorem 3.4 ([11]).

m1(3, n) ∼
5

9

(

n− 1

2

)

A crucial ingredient of the proof in [11] was a strong version of the
Absorbing Lemma for matchings, an analog of Lemma 2.10 from Section 2.2.

Lemma 3.5 ([11], Lemma 10). For all γ > 0 and integers k > d > 0 there
is an n0 such that for all n > n0 the following holds: Suppose that H is
a k-graph on n vertices with δd(H) ≥ (1/2 + 2γ)

(

n−d
k−d

)

, then there exists a
matching M := Mabs in H such that
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(i) |M | < γkn/k, and

(ii) for every set W ⊂ V \ V (M) of size at most |W | ≤ γ2kn and divis-
ible by k there exists a matching in H covering exactly the vertices
of V (M) ∪W .

This success prompted Hàn, Person, and Schacht to conjecture that (5)
is the correct asymptotics of md(k, n).

Conjecture 3.6 ([11]). For all 1 ≤ d < k/2,

md(k, n) ∼ max

{

1

2
, 1−

(

k − 1

k

)k−d
}

(

n− d

k − d

)

.

Observe that with d = 1 the above coefficient equals 5
9 for k = 3, 37

64 for
k = 4, and 369

625 for k = 5. However, for d = 2 and k = 5 it is 1
2 .

Very recently, Markström and the second author [19] lowered slightly the
general bound (7) by using some ideas behind Theorem 3.4. They proved
that for all 1 ≤ d < k/2

(8) md(k, n) ≤
(

k − d

k
− 1

kk−d
+ o(1)

)(

n− d

k − d

)

.

In the smallest unknown case, k = 4, inequality (7) yields a bound
m1(4, n) ≤ (4864 + o(1))

(

n−1
3

)

. It follows from (8) that m1(4, n) ≤ (4764 +

o(1))
(

n−1
3

)

. By some tedious case by case analysis the coefficient can be

lowered further to 42
64 (see [19]), still far from the conjectured 37

64 .

3.3. Fractional perfect matching

A relaxation of the notion of a perfect matching can be obtained by allow-
ing the inclusion of fractional edges into a matching. A fractional perfect
matching in a k-graph H = (V,E) is a function w : E → [0, 1] such that for
each v ∈ V we have

∑

e∋v w(e) = 1. It follows that if an n-vertex k-graph
has a fractional perfect matching then

∑

e∈H w(e) = n
k , which justifies the

name.

For every 1 ≤ d ≤ k − 1, let

m∗
d(k, n) = min

{

m : δd(H) ≥ m =⇒ H contains a fractional

perfect matching
}

.
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It was proved in [23] that m∗
k−1(k, n) ≤ ⌈n/k⌉, so, again, the threshold

is much lower than that for perfect matchings. Moreover, Construction 3.2
with |A| = ⌈n/k⌉ − 1 provides an n-vertex k-graph with δk−1 = ⌈n/k⌉ − 1
which has no fractional perfect matching. Hence, we have the following
result.

Theorem 3.7 ([23]). m∗
k−1(k, n) = ⌈n/k⌉.

The proof of Theorem 3.7 utilizes the Farkas Lemma (see, e.g., [6] or
[18]) which asserts that a system of equations yA = b,y ≥ 0, is solvable if
and only if the system Ax ≥ 0,bx < 0, is unsolvable.

Let A := AH be the incidency matrix of a hypergraph H with rows
representing the edges and columns representing the vertices of H. We
applied Farkas’ Lemma with this A and with b = 1 – the vector of length n
whose all entries are equal to 1, and showed that, under the assumption
δk−1(H) ≥ ⌈n/k⌉ the system of inequalities Ax ≥ 0,1x < 0, has no
solutions. Hence, there is a solution to yA = 1,y ≥ 0, which determines a
fractional perfect matching w(e) = ye for all e ∈ H.

It turns out that fractional matchings can be used to give an alternative
proof of Theorem 3.4, and possibly even to settle Conjecture 3.6 in full
generality. Indeed, the following relation holds.

Theorem 3.8. For every 1 ≤ d ≤ k − 1 and every α > 0

md(k, n)
(

n−d
k−d

) ≤ max

(

1

2
,
m∗

d(k, n)
(

n−d
k−d

)

)

+ α

for sufficiently large n.

Observe that, trivially, m∗
d(k, n) ≤ md(k, n). Therefore, if m∗

d(k, n) ≥
1
2

(

n−d
k−d

)

then

(9) m∗
d(k, n) ∼ md(k, n)

The proof of Theorem 3.8 is based on Theorem 1.1 in [9]. An immediate
corollary of that result asserts the existence of an almost perfect matching
in a k-graph with all degrees almost equal and all pair degrees much smaller
than the vertex degrees. (see the Remark after Theorem 1.1 in [9]). Here
we formulate this corollary in the following lemma.
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Lemma 3.9 ([9]). For all k, ε > 0 and a > 3 there exists τ = τ(ε) and
n0 = n0(τ) such that if n > n0 and H is an n-vertex k-graph satisfying

1. (1− τ)D < degH(v) < (1 + τ)D for some D and all v ∈ V , and

2. δ2(H) < D/(logn)a

then H contains a matching Malm covering all but at most εn vertices.

The second tool is the Strong Absorbing Lemma 3.5 (see previous sec-
tion).

Sketch of Proof of Theorem 3.8. Assume that there exists a constant
0 < c < 1 such that m∗

d(k, n) ∼ c
(

n−d
k−d

)

. This is not a restriction at all, as we

know by (5) that m∗
d(k, n) = Θ(

(

n−d
k−d

)

). For any α > 0 consider an n-vertex
k-graph H, n large, with

δd(H) > (c+ α)

(

n− d

k − d

)

.

Set γ = α/2 and ε = (α/2)2k. The proof consists of four steps.

1. Find an absorbing matching Mabs satisfying properties (i) and (ii) of
Lemma 3.5. SetH ′ = H\V (Mabs). Note that δd(H

′) ≥ (c+α/2)
(

n−d
k−d

)

.

2. Select a spanning subhypergraph H ′′ of H ′ satisfying the assumptions
of Lemma 3.9 with D = n0.2, τ = o(1) any a > 0, and n ≥ n0(a).

3. Find an almost perfect matching Malm in H ′′ by applying Lemma 3.9.
Note that

∣

∣V (Malm)
∣

∣ ≥ (1−ε)
∣

∣V (H ′)
∣

∣ and thus,
∣

∣V (Malm∪Mabs)
∣

∣ ≥
(1− ε)n.

4. ExtendMalm∪Mabs to a perfect matching of H by using the absorbing
property (ii) of Mabs with respect to W = V (H ′) \ V (Malm).

In view of relation (9), in order to prove Conjecture 3.6 it is sufficient
to show that

m∗
d(k, n) ∼

(

1−
(

k − 1

k

)k−d
)

(

n− d

k − d

)

.

This is work in progress. We have heard from Endre that he knows how to
determine m1(3, n) exactly.
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3.4. The k-partite case

Recall from Section 2.4 that δ′(H) := δ′k−1(H) is the minimum of degH(S)
taken over all legal (k − 1)-tuples of vertices S in a k-partite k-graph H.
Throughout this subsection, we asume that the k-partition V (H) = V1 ∪
· · · ∪ Vk satisfies |V1| = · · · = |Vk| = n.

In [16], Kühn and Osthus showed that if

δ′k−1(H) ≥ n/2 +
√

2n log n

then H has a perfect matching. Improving this result, Aharoni, Geor-
gakopoulos, and Sprüssel obtained in [1] a surprisingly strong result.

Theorem 3.10 ([1]). If for every (k − 1)-tuple of vertices (v1, . . . , vk−1) ∈
V1×· · ·×Vk−1 we have degH(v1, . . . , vk−1) > n/2 and for every (v2, . . . , vk) ∈
V2×· · ·×Vk we have degH(v2, . . . , vk) ≥ n/2, thenH has a perfect matching.
Consequently, if δ′(H) > n/2 then H contains a perfect matching.

There is an example in [16] (see also Example 1 in [1]) of a k-partite
k-graph H0 with k even and n = 2 (mod 4), such that δ′k−1(H0) = n/2 and
H0 does not have a perfect matching. For all other values of k and n one
can provide similar constructions with δ′k−1(H0) ≥ n/2 − 1, leaving open
the possibility that the result from [1] can be strengthen even further.

Problem 3.11. Assume that k is even or n 6= 2 (mod 4). Is it true that
if δ′k−1(H) ≥ n/2 then H has a perfect matching? If so, is it sufficient to
impose this degree bound only on two types of legal (k − 1)-tuples, similar
to Theorem 3.10?

In [1] several other open problems and conjectures are posed. We just
quote two of them here. The first one is related to m1(k, n) in the non-
partite case. Note that 1 − (1− 1/k)k−1 < 1 − 1/e and compare with
Problem 3.6 above.

Problem 3.12 ([1]). Is it true that if δ′1(H) ≥ (1− 1/e)nk−1 then there is
a perfect matching in H?

Another problem from [1] is to prove the following conjecture. For a
subset I ⊆ [k] of indices, let us call a subset S of vertices of H an I-tuple if
|S| = |I| and S ∩Vi 6= ∅ if and only if i ∈ I. (Observe that if S is an I-tuple
then, in fact, for all i ∈ I, we have |S ∩ Vi| = 1.)
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Conjecture 3.13 ([1]). Let I be a subset of [k]. If deg′(S) > 1
2n

k−|I| for

every I-tuple S, and deg′(S) > 1
2n

|I| for every
(

[k] \ I
)

-tuple S, then H has
a perfect matching.

This conjecture was asymptotically verified by Pikhurko in [21], while
its fractional version was proved in [1] (cf. Section 3.3 for the definition).

For d < k − 1, there are also Dirac-type results relating δ′d with perfect
and almost perfect matchings. Already in 1981, Daykin and Häggvist proved
that

δ′1(H) ≥ k − 1

k

(

nk−1 − 1
)

guarantees a perfect matching. This was extended in [11]: if

δ′d(H) >
k − d

k
nk−d + knk−d−1

then H contains a matching covering all but k(d − 1) vertices, and so, a
perfect matching for d = 1.

The other extreme case, d = k− 1, has been also studied in [16]. It was
proved there that if

δ′k−1(H) ≥ ⌈n/k⌉
then there is a matching in H covering at least n−(k−2) vertices from each
partition class Vi, i = 1, . . . , k. It is, perhaps, interesting to compare this
result with the results of Subsection 3.1 and consider the following analogue
of Problem 3.3.

Problem 3.14. Is it true for every k-partite k-graph H that if δ′k−1(H) ≥
⌈n/k⌉ then H has a matching covering at least n − 1 vertices from each
partition class?

3.5. Other packings

In this section we briefly discuss F -packings, that is, tilings of a hypergraph
with vertex disjoint copies of F . Given two hypergraphs, F and H, an F -
packing in H is a set of vertex disjoint copies of F in H. An F -packing
is perfect if it covers all vertices of H. For n divisible by

∣

∣V (F )
∣

∣ , let
pd(k, n;F ) be the smallest integer p such that whenever a k-graph H on
n vertices, with n divisible by

∣

∣V (F )
∣

∣ , satisfies δd(H) ≥ p then H contains
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a perfect F -packing. In particular, when F = K
(k)
k is a single edge, then

pd(k, n;K
(k)
k ) = md(k, n) is the Dirac threshold for perfect matchings.

Unlike for graphs, there are very few results about degree conditions
guaranteeing perfect F -packings in hypergraphs. Below we present two
problems, both assuming that k = 3 and d = 2.

In [17] the authors study, among other things, packings of copies of a

(3, 1)-cycle C
(3,1)
s on s vertices, s even (see Definition 1.1). In the smallest

case of s = 4, that is, the unique 3-graph with 4 vertices and 2 edges, they
show that

(10) p2(3, n;C
(3,1)
4 ) ∼ n/4.

This seems surprising, since the obtained threshold is about twice smaller
than the threshold for perfect matchings. For s ≥ 6, the value of

p2(3, n;C
(3,1)
s ) remains unknown, except for large s when p2(3, n;C

(3,1)
s ) ∼

n/4, but unlike in (10), here the asymptotics is also as s → ∞ (see Theorem
1.2 in [17]).

As for the lower bound, a construction provided in [17] yields that

p2(3, n;C(3,1)
s ) ≥ ⌈s/4⌉

s
n.

This is quite interesting, since it shows that for a fixed s not divisible by
4, the threshold constant is strictly larger than 1

4 (e.g., it is at least 1
3 for

s = 6).

Problem 3.15. Determine p2(3, n;C
(3,1)
s ), s ≥ 6, s even.

Similar lower bounds are claimed in [17] for k > 3 with 1
4 replaced by

1
2(k−1) .

In [21], Pikhurko investigated a challenging problem of determinig

p2(3, n;K
(3)
4 ), where K

(3)
4 is the complete 3-graph on 4 vertices, and ob-

tained bounds

3

4
n− 2 ≤ p2(3, n;K

(3)
4 ) ≤ 2 +

√
10

6
n+O

(
√

n log n
)

,

where the upper bound was also proved, independently, by Keevash and
Sudakov (unpublished). There is some indication that the truth may lie at
the lower end. Indeed, another result from [21] states that for n ≥ 15, if

δ2(H) ≥ 3

4
n− 5

4
,
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then there is a K
(3)
4 -packing in H covering all but at most 14 vertices.

However, one should remember that divisibility has a big impact on the
Dirac thresholds for (almost) perfect matchings; compare, for instance, the
values of m(3, n) and m1(3, n).

Problem 3.16. Determine p2(3, n;K
(3)
4 ).
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[12] H. Hàn and M. Schacht, Dirac-type results for loose Hamilton cycles in uniform
hypergraphs, J. of Combin. Theory, Ser. B, 100(3) (2010), 332–346.

[13] G. Y. Katona and H. A. Kierstead, Hamiltonian chains in hypergraphs, J. Graph
Theory, 30 (1999), 205–212.
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in uniform hypergraphs with large minimum collective degree, Commentationes
Mathematicae Universitatis Carolinae, 49(4) (2008), 633–636.
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A. Mickiewicz University
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