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Upper tails for counting objects in randomly
induced subhypergraphs and rooted random

graphs
Svante Janson and Andrzej Ruciński

Abstract. General upper tail estimates are given for counting edges in a random induced

subhypergraph of a fixed hypergraph H, with an easy proof by estimating the moments. As an

application we consider the numbers of arithmetic progressions and Schur triples in random subsets

of integers. In the second part of the paper we return to the subgraph counts in random graphs

and provide upper tail estimates in the rooted case.

1. Introduction

Consider a finite sum of dependent random variables of the following form.
Let Γ be a finite ground set and let S be a family of its subsets. Let Γp be a
random, binomial subset of Γ which independently includes each element of Γ with
probability p. Finally, for each S ∈ S , let IS be the indicator random variable of the
event {S ⊆Γp}. Then X=X(Γ, S, p)=

∑
S∈S IS counts the number of members of

the family S contained in a random subset Γp. A lot of research has been devoted
to the study of the asymptotic distribution of X when the order N=|Γ| grows to

∞ and p=p(N), both in a general setting and for particular instances. Among the
latter, the most popular models are random graphs G(n, p), where Γ=

(
V
2

)
for some

n-element vertex set V (see [5]), random k-uniform hypergraphs (see [1]), where
Γ=

(
V
k

)
, and random subsets of integers, where V ={1, 2, ..., n} (see [3], [9]).

One feature which received a lot of attention is the rate of decay of the tails
of X , the lower tail P(X ≤t E X) for 0<t<1, and the upper tail P(X ≥t E X) for
t>1. Good estimates for the lower tail follow from the Fortuin–Kasteleyn–Ginibre

A. Ruciński supported by Polish grant N201036 32/2546. Research was performed while
the authors visited Institut Mittag-Leffler in Djursholm, Sweden, during the program Discrete
Probability, 2009.
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inequality (lower bound) and Janson’s inequality (upper bound), see [5], Section 2.2.
Often, these two bounds asymptotically match under some restrictions on the de-
pendencies among the summands IS . This is, in particular, the case of subgraph
counts in random graphs, see [5], Section 3.1.

The upper tails tend to be harder to analyze. Some ad hoc results can be
found in [5], [10], [6] and [7], among others. For the subgraph count problem a quite
satisfactory and complete result has been obtained in [4], where the logarithms of
the upper and lower bound on P(X ≥t E X) are of the same order of magnitude
except for a logarithmic term. A generalization to random hypergraphs can be
found in [1].

This paper can be viewed as a follow-up paper to [4]. Using the proof tech-
niques developed therein, those results are extended in two directions. First, we
return to the more general model of set systems (or hypergraphs) and obtain some
straightforward estimates for the upper tail of X , covering, in particular, the num-
ber of arithmetic progressions of given length in a random subset of integers. Then,
we return to the subgraph counts to study the rooted version of the problem, only
to discover some unexpected features there.

2. Counting edges of randomly induced subhypergraphs

Let H be a k-uniform hypergraph on a vertex set Γ with |Γ|=N and with
| H |=aN q edges, where a=a(N)>0 and 0<q ≤k. (In principle, a(N) is arbitrary,
so this is no restriction on |Γ|; a(N) is essentially constant, or at least bounded, in
some important applications, see Section 2.1.) Consider a random, binomial subset
Γp of Γ, where 0<p=p(N)<1, and the random variable X=| H[Γp]| counting the
edges of H that are entirely present in Γp. Note that

μ := E X = | H |pk = aNqpk.

For j=0, 1, ..., k, let
Δj = max

S∈(Γ
j)

| {T ∈ H : T ⊇ S}|,

i.e., the maximum number of edges that contain j given vertices.

Theorem 2.1. Let q be an integer, 1≤q ≤k, and let a0>0 and t>1 be real
numbers. There exists a constant c=c(q, a0, t) such that if H satisfies the following
four conditions:

(i) a(N)=| H |/N q ≥a0;
(ii) for all j ≤q we have Δj =O(Nq−j);
(iii) for all j>q we have Δj =O(1);
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(iv) there exists C>0 and Γ0 ⊆Γ such that |Γ0| ≤Cμ1/q and | H[Γ0]| ≥tμ, then,
with X=| H[Γp]|,

pCμ1/q

=exp
(

−Cμ1/q log
1
p

)

≤ P(X ≥ tμ) ≤ exp(−cμ1/q).

Before giving the proof, we make some comments.
1. The two exponents are of the same order of magnitude except for the loga-

rithmic term log(1/p); this inaccuracy disappears obviously for p constant.
2. Note that P(X ≥tμ)>0⇔tμ≤ | H | ⇔tpk ≤1, so the theorem is interesting for

t≤p−k only. (For larger t, P(X ≥tμ)=0 so the lower bound fails, while the upper
bound is trivial; further, (iv) fails.)

3. Condition (iii) is redundant, since it follows from (ii) with j=q, but we
prefer to include it explicitly for emphasis, and for comparison with Theorem 2.2
which allows for non-integer values of q (note that for non-integer q, (iii) does not
follow from (ii)).

4. As we will see in the proof, the upper bound follows only from conditions (i)–
(iii), while the lower bound is a consequence of condition (iv) alone.

Proof. Take C and Γ0 as in assumption (iv). We have

P(X ≥ tμ) ≥ P(Γp ⊇ Γ0) = p|Γ0|,

which proves the lower bound.
For the upper bound, we use the same approach as in [4]. By Markov’s in-

equality, for every m we have

P(X ≥ tμ) ≤ E Xm

tmμm
.

It remains to show that for a sufficiently small c1=c1(q, a0, t) and m=	c1μ
1/q 
 we

have, say, E Xm ≤tm/2μm.
Having chosen m−1 (not necessarily distinct) edges E1, ..., Em−1 of H, let Nj

be the number of edges Em such that
∣
∣Em ∩

⋃m−1
i=1 Ei

∣
∣=j, and let N≥j =

∑
k≥j Nk.

We estimate these numbers as follows: For j=0,

(1) N0 ≤ N≥0 = | H |.

For 1≤j ≤q, by (ii),

(2) Nj ≤ N≥j =O(mjΔj) =O(mjNq−j),
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since if
∣
∣Em ∩

⋃m−1
i=1 Ei

∣
∣≥j, then there exists a set A⊆

⋃m−1
i=1 Ei with |A|=j and

Em ⊇A, and there are O(mj) such sets A, and at most Δj edges Em for each A.
For j>q we obtain

(3) Nj ≤ N≥q =O(mq)

from (2) (with j=q).
Arguing as in [4] we have from (1)–(3), by induction on m,

E Xm ≤ μ

(

| H |pk+
q∑

j=1

O(mjNq−j)pk−j +
k∑

j=q+1

O(mq)pk−j

)m−1

= μm

(

1+O

(
1
a

) q∑

j=1

(
m

Np

)j

+O(1)
mq

μ

)m−1

for every m≥1. Now choose m=	c1μ
1/q 
 ≥1, as said above. If m≥2, then m/Np≤

2c1μ
1/q/Np=2c1a

1/qpk/q−1 ≤2c1a
1/q, and thus, using (i), the term in parenthesis

in the last line can be made arbitrarily close to 1 for all m≥2 by choosing c1>0
small enough; in particular, it can be made less than t1/2. Hence, for the chosen m,
E Xm ≤tm/2μm if m≥2, and trivially if m=1 too. This completes the proof. �

In the case of non-integer q, the upper bound gets further away from the lower
bound. Indeed, we then have the following result.

Theorem 2.2. Let q, a0 and t be real numbers, with 0<q ≤k, a0>0 and t>1.
There exists a constant c=c(q, a0, t) such that under the same assumptions (i)–(iv)
as in Theorem 2.1,

P(X ≥ tμ) ≤ exp(−c max{μ1/qpk(1/�q� −1/q), μ1/�q� })

and

P(X ≥ tμ) ≥ pCμ1/q

=exp
(

−Cμ1/q log
1
p

)

Proof. The only difference in the proof is when we bound Nj to estimate
E Xm. Namely, for j ≥ 	q
, we either use Nj ≤N≥ �q� =O(m�q�Nq− �q�), or Nj ≤
N≥ �q� =O(m�q�). We then choose

m= 	c1 max{μ1/qpk(1/�q� −1/q), μ1/�q� }


for a small constant c1. (We may assume that μ≥1, since otherwise m=1 and,
recalling that t>1, the estimate E X ≤t1/2μ is trivial.) �
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2.1. Integer solutions of linear homogeneous systems

For an l×k integer matrix A, where l<k, assume that every l×l submatrix
B of A has full rank r(B)=l=r(A). Consider the system of homogeneous linear
equations Ax=0, where x=(x1, ..., xk) is a column vector and 0 is a column vector
of dimension l. We assume also that there exists a distinct-valued positive integer
solution of Ax=0. These assumptions seem to be quite restrictive, but, in fact, we
cover at least one important case: the arithmetic progressions of length k which
can be viewed as distinct-valued solutions to a system of l=k −2 equations.

Let Γ=[N ]:={1, 2, ..., N } and 0<p=p(N)<1. Then Γp is a random subset of
the first N integers with density p. Define a k-uniform hypergraph HA=HA(N)
as the family of all solution sets {x1, ..., xk } of the system Ax=0 with xi distinct
and in [N ]. Let us check that for some a0, q, and C the assumptions (i)–(iv) of
Theorem 2.1 hold, at least in the interesting case μ=| HA|pk ≥1 and tμ≤ | HA|, which
can be equivalently restated as

(4) μ ≥ 1 and t ≤ p−k.

Set q=k −l.
(i) and (iv) We will show that there exists a0>0 such that for sufficiently large

m≤N we have

(5) | HA(m)| ≥ a0m
q.

Taking m=N in (5) we obtain | HA| ≥a0N
q , which is (i). Taking

m=min{ 	(ta−1
0 μ)1/q 
, N }

in (5) and Γ0=[m] we obtain (iv) with C=2(ta−1
0 )1/q , using the assumptions in (4).

Let x0 ∈Zk be a positive integer solution of Ax=0. Let M0 be the largest of
its coefficients x01, ..., x0k. Let x1, ...,xq be q linearly independent integer solutions
of Ax=0. (There exist q linearly independent rational solutions, and we may mul-
tiply these by their common denominators and thus assume that they are integer
solutions.) Let M be the maximum of the absolute values of the coefficients in
x1, ...,xq .

Given m, let d:=�m/(M0+1). For any integers a1, ..., aq , the sum dx0+
∑q

i=1 aixi yields an integer solution of Ax=0, and these solutions are all distinct.
If further |ai|<d/2qM for all i, this solution has all coefficients positive, less than m,
and distinct. The number of these solutions is Θ(dq)=Θ(mq). Hence, (5) holds.

(ii) and (iii) By elementary algebraic properties of systems of linear equations,
every system By=c, where B is an integer l×h matrix, has no more than Nh−r(B)

solutions in [N ]. Thus, Δ0=| HA| ≤Nk−l=Nq . For every subset J of the columns
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of A, define AJ as the submatrix obtained from A by removing the columns in J .
This means that when we fix values of some j variables, then the obtained system of
equations is of the form By=c, where y consists of the remaining unknowns, B=AJ ,
and J is the set of columns of A corresponding to the fixed variables. Hence, the
number of solutions with j given elements corresponding to the given columns J is
at most Nk−j−r(AJ ). Now, for all j ≤q=k −l, if |J |=j then, by our assumption on
A, r(AJ)=l, so (summing over J) Δj =O(Nk−j−l)=O(Nq−l). On the other hand,
if j>k −l then r(AJ )=k −j, so Δj =O(N0)=O(1).

Hence, given (4), Theorem 2.1 applies for such HA with q=k −l and μ=
Θ(Nk−lpk).

Example 2.3. In particular, we obtain quite sharp estimates for the tails of the
numbers of arithmetic progressions of length k in [N ]p. Indeed, they are given by
the system xi −2xi+1+xi+2=0, i=1, ..., k −2. It is easy to check that for l=k −2
every l×l submatrix has full rank, and we have the following result.

Corollary 2.4. Let X be the number of arithmetic progressions of length k

in [N ]p, k ≥3, and let μ, t>1, and p satisfy (4). Then there exist c, C>0 such that

pCNpk/2
=exp

(

−CNpk/2 log
1
p

)

≤ P(X ≥ tμ) ≤ exp(−cNpk/2).

Example 2.5. A Schur triple is a triple {x, y, z} of positive integers such that
x+y=z, x �=y. In this case we have k=3 and l=1, and so q=2.

Corollary 2.6. Let X be the number of Schur triples in [N ]p, and let μ, t>1,
and p satisfy (4) with k=3. Then there exist c, C>0 such that

pCNp3/2
=exp

(

−CNp3/2 log
1
p

)

≤ P(X ≥ tμ) ≤ exp(−cNp3/2).

Remark 2.7. Arithmetic progressions are partition regular, a name introduced
by Rado for all linear systems, the solutions of which satisfy theorems similar to the
van der Waerden theorem. But, in addition, they are also density regular, which
means that every subset of integers of positive density contains them (Szemerédi’s
theorem). Partition properties of random subsets of integers with respect to density
regular systems were studied in [9]. Schur triples form an example of partition
regular but not density regular linear system. Partition properties of random subsets
of integers with respect to Schur triples were studied in [3].
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Remark 2.8. We have here treated the set of solutions x to Ax=0 as a hyper-
graph, i.e., we have treated the solutions x as k-sets rather than k-vectors. This
is fine for the examples of arithmetic progressions and Schur triples treated above,
but in general it may be more natural to regard the solutions x as vectors (or,
equivalently, sequences) in [N ]k, rather than as sets. We then define HA as the
subset {x : Ax=0} of [N ]k. In this way, we distinguish between solutions that are
permutations of each other (for example, (x, y, z) and (y, x, z) in the Schur triple
case), and we allow repeated values.

It is possible to prove a version of Theorem 2.1 for this case, using essentially
the same proof, but the possibility of repeated elements of Γ=[N ] complicates
the conditions; we now need bounds on the number of vectors in HA that have j

coordinates fixed, and at most � distinct values of the other coordinates. We omit
the details.

2.2. Further examples and remarks

Example 2.9. In the dense case, that is, when q=k, assumption (iv) holds
trivially by averaging over all subsets Γ0 of a suitable size, provided the necessary
condition t≤p−k is satisfied, but this result has been known already (cf. [6] and [7]).
In particular, this case covers the number of matchings of size k in a random
r-uniform hypergraph G(r)(n, p), by considering a k-uniform hypergraph H where
the vertices are the edges of the complete r-uniform hypergraph K

(r)
n and the edges

are the matchings of size k in K
(r)
n . Then the assumptions of Theorem 2.1 hold

with q=k.

Remark 2.10. It can be very hard to improve upon Theorem 2.2, because it
contains the triangle count problem from [4]. Indeed, with Γ=

(
[n]
2

)
and H being

the family of the edge sets of all triangles in Kn, we have N=
(
n
2

)
and | H |=Θ(n3)=

Θ(N3/2), so q= 3
2 . To get the result from [4], we would need to improve the upper

bound, but this seems to be impossible without “seeing” the vertices of the random
graph.

3. Rooted subgraphs of random graphs

A rooted graph (R, G) is a graph G with a fixed independent set R; we also say
that the graph is rooted at R. (For simplicity, we sometimes use G to denote the
rooted graph (R, G) when R is clear from the context.) Counting rooted subgraphs
of a random graph G(n, p) with a fixed set R of roots plays an important role in
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studying the so called extension statements and 0–1 laws in random graphs, see,
e.g., [5, Sections 3.4 and 10.2]. Another application can be found in [8], where a
sharp concentration of the number of paths of given length connecting two given
vertices is utilized. Here we give a quite accurate estimate of the upper tail of the
number of rooted copies of a given rooted graph in G(n, p); the result is similar to
our main result in [4] for unrooted graphs, but somewhat simpler, except for a new
complication for constant p. (Note that we use G and G(n, p) for different graphs
in this section; these should not be confused.)

A rooted graph (R′, H) is a rooted subgraph of (R, G) if H is a subgraph of
G and R′ =V (H)∩R. We let NR(G, H) denote the number of rooted copies of H

in G.
Given a rooted graph (R, G) and a graph F on the vertex set V (F )=[n]=

{1, 2, ..., n}, let r=|R| and regard F as rooted on [r]={1, ..., r}; we say that a
rooted subgraph of ([r], F ) isomorphic to (R, G) is an R-rooted copy of G in F .
Thus NR(F, G) is the number of R-rooted copies of G in F . In particular, when
F is a random graph G(n, p), we let the random variable X=XR

G =XR
G(n, p) be the

number NR(G(n, p), G) of R-rooted copies of G in G(n, p). We further define

(6) μ=μR(G, n, p) := EXR
G =NR(Kn, G)pe(G).

For a subgraph H of G let H −R be the graph obtained from H by deleting
all vertices of R (together with incident edges), and define

(7) ΨR
H =ΨR

H(n, p) := nv(H−R)pe(H).

Note that ΨR
H =Θ(E XR′

H ), with R′ =R∩V (H), but as defined, it does not depend
on the actual set R′ of roots of H .

Recall that, for a graph H , the fractional independence number α∗(H) is de-
fined as the maximum value of

∑
i xi over all assignments {xi}i∈V (H) such that

0≤xi ≤1 for all vertices i∈V (H) and xi+xj ≤1 for every edge ij ∈H . We let

(8) MR,G =MR,G(n, p) = min
H⊆G

e(H)>0

(ΨR
H)1/α∗(H−R).

We further let

(9) mR(G) := max
H⊆G

e(H)>0

e(H)
v(H −R)

> 0,

and note that (7), (8) and (9) imply that

(10) MR,G < 1 ⇐⇒ npmR(G) < 1.
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By the same argument as for the unrooted case in [5, Section 3.1], it is easy to show
that p=n−1/mR(G) is the threshold for the appearance of an R-rooted copy of G in
G(n, p).

Let eR(G)=e(G)−e(G−R) be the number of edges in G incident with the root
set R. We assume below that eR(G)>0; the case eR(G)=0 is uninteresting since
then XR

G equals the number of copies of the unrooted graph G−R in G(n, p)−[r],
which we identify with G(n−r, p), so XR

G(n, p)=XG−R(n−r, p) and we may apply
the results of [4].

Theorem 3.1. For every rooted graph (R, G) with eR(G)>0 and for every
t>1 there exist constants c=c(t, G) and C=C(t, G) such that for all n≥v(G), with
p1 :=t−1/eR(G) and p2 :=t−1/e(G) the following holds:

(a) if p≤n−1/mR(G), then

pC =exp
(

−C log
1
p

)

≤ P(XR
G ≥ tμ) ≤ exp(−c);

(b) if n−1/mR(G) ≤p≤p1, then

pCMR,G =exp
(

−CMR,G log
1
p

)

≤ P(XR
G ≥ tμ) ≤ exp(−cMR,G);

(c) if p1 ≤p≤p2, then

exp(−C(n+(p−p1)2n2)) ≤ P(XR
G ≥ tμ) ≤ exp(−c(n+(p−p1)2n2));

(d) if p2<p≤1, then
P(XR

G ≥ tμ)= 0.

Note that 0<p1 ≤p2<1, and that p1 and p2 do not depend on n. Before giving
the proof, we make some comments.

(i) Case (d) is trivial, because p>p2 ⇔tpe(G)>1⇔tμ>NR(Kn, G), see (6),
so it is impossible to get at least tμ rooted copies of G on n vertices.

(ii) Case (a) is uninteresting and included only to show that the estimates in
(b) extend in a continuous way to smaller p. (Note that MR,G=1 at the threshold
p=n−1/mR(G), cf. (10).) Indeed, in case (a) we are below the threshold, so typically
XR

G =0.
(iii) If eR(G)=e(G), or equivalently e(G−R)=0, i.e., all edges in G have a

root as one endpoint, then p1=p2 and case (c) disappears, so that (b) is valid until
the cutoff at p2. For all other G, p1<p2 and case (c) appears, so there is a phase
transition at p1.
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(iv) In the unrooted case in [4] there is also a phase transition at p=n−1/ΔG .
This has no counterpart in the rooted case.

(v) Since eR(G)>0, G has a rooted subgraph H0 which is just a single edge
with one endpoint in R; we have ΨR

H0
=np and α∗(H0 −R)=α∗(K1)=1, so

(11) MR,G ≤ (ΨR
H0

)1/α∗(H0−R) =np ≤ n.

Hence, the upper bound in (b) is never stronger than exp(−Θ(n)).
(vi) In (b) the exponents in the lower and upper bound are of the same order

of magnitude except for the logarithmic term log(1/p); this inaccuracy disappears
obviously for p constant.

(vii) For any fixed p>0 (or p=p(n)∈[p0, 1] for some constant p0>0), ΨR
H =

Θ(nv(H−R)). Since α∗(H −R)≤v(H −R) for all H ⊆G, with equality for at least
one H with e(H)>0, viz. a single rooted edge, (8) shows that then MR,G=Θ(n).
Consequently, the result in (b) can be written for constant p≤p1 as P(XR

G ≥tμ)=
exp(−Θ(n)). This shows that the bounds in (b) and (c) agree at p=p1. Moreover,
we obtain the following corollary.

Corollary 3.2. With assumptions and notation as in Theorem 3.1, assume
further that p is fixed.

(a) If 0<p≤p1, then

P(XR
G ≥ tμ)= exp(−Θ(n)).

(b) If p1<p≤p2, then

P(XR
G ≥ tμ)= exp(−Θ(n2)).

(c) If p2<p≤1, then
P(XR

G ≥ tμ)= 0.

The sudden jump in the exponent from n to n2 at p=p1 (for G with
e(G−R)>0, so p1<p2) may be surprising, and has no counterpart in the unrooted
case in [4]. It may roughly be explained as follows (see the proof): If p<p1, then it
suffices (typically) to have all Θ(n) edges from the roots present in G(n, p) in order
to have more than tμ rooted copies of G. However, if p>p1, this is not enough,
and we need also (typically) a larger proportion than p of the

(
n−r

2

)
other possible

edges, which by the usual Chernoff bound has probability only exp(−Θ(n2)).

Proof of Theorem 3.1. We mostly follow closely the proof for the unrooted
case from [4], and therefore omit some details. As remarked above, (d) is trivial.
Part (a) can be proved by a modification of the argument below, replacing MR,G
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by 1; we omit the details and refer to the corresponding argument in [4]. Hence we
consider only (b) and (c). We let C1, C2, ... and c1, c2, ... denote constants that may
depend on G and t, but not on n or p.

Upper bounds. If (R, H) is a rooted graph, let NR(n, m, H) be the maximum
of NR(F, H) over all rooted graphs F with v(F )≤n and e(F )≤m and with a set of
roots of size |R|. In other words, NR(n, m, H) is the maximum number of copies of
(R, H) that can be packed in n vertices and m edges with a given set of |R| roots.

Let us start with the observation that if the minimum degree δ(H)>0 then

(12) NR(n, m, H) ≤ NR(2m, m, H) =O(N(2m, m, H −R)).

Indeed, for any F with v(F )≤n, e(F )≤m, and δ(F )>0, we have v(F )≤2m, so the
left-hand side inequality follows. To prove the right-hand side inequality, assume
that F and H have the same set of roots R. Then

NR(F, H) ≤ N(F −R, H −R)×2|R|(v(H)− |R|) =O(N(2m, m, H −R)).

Now, to prove the upper bound on P(XR
G ≥tμ), as before, we want to show that,

say, E Xm ≤tm/2μm, where X=XR
G , μ=E X , and m is suitably large. Similarly as

in [4] and, as a matter of fact, similarly to the proof of Theorem 2.1 here, an
inductive argument yields, for all m≥1,

(13) E Xm ≤ μm

(

1+C1

∑

H⊆G

NR′
(n, (m−1)e(G), H)

ΨR
H

)m−1

,

where the sum extends over all rooted subgraphs (R′, H) of (R, G) with δ(H)>0.
(H corresponds to the subgraph spanned by the edges in the intersection of the mth
copy of G and the union of the m−1 previous copies, and as such has δ(H)>0.)

We take m:=	c1MR,G
 for a suitable small constant c1 ∈(0, 1) to be fixed later.
By (12), [4, Theorem 1.3] and (8), for every H ⊆G with δ(H)>0, assuming m≥2,

NR′
(n, (m−1)e(G), H) ≤ C2N(2(m−1)e(G), (m−1)e(G), H −R)

= Θ(mα∗(H−R))=Θ((c1MR,G)α∗(H−R))

≤ C3c1ΨR
H .

Hence, (13) yields (the case m=1 being trivial), E Xm ≤μm(1+C4c1)m−1. We
choose c1 so small that 1+C4c1 ≤t1/2, and then Markov’s inequality yields

(14) P(X ≥ tμ) ≤ E Xm

tmμm
≤ t−m/2 ≤ exp(−c2MR,G).

In particular, this yields the upper bound in (b).
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For the upper bound in (c), we note that each rooted copy of G in Kn yields
a copy of G−R in Kn −R=Kn−r; conversely each copy of G−R in Kn −R can be
extended to exactly g rooted copies of G in Kn, for some integer g ≥1 depending
on G. Hence, XR

G(n, p)≤gXG−R(n−r, p). Further, NR(Kn, G)=gN(Kn−r, G−R)
so

μ = NR(Kn, G)pe(G) = gN(Kn−r, G−R)pe(G−R)+eR(G)(15)

= gμ(G−R, n−r, p)peR(G).

Consequently,

P(XR
G ≥ tμ) ≤ P(gXG−R(n−r, p) ≥ tgμ(G−R, n−r, p)peR(G))(16)

= P(XG−R(n−r, p) ≥ tpeR(G)μ(G−R, n−r, p)).

Let t̃:=tpeR(G), and note that, for (c), 1≤ t̃≤t. By [4, Theorems 1.2 and 1.5, and
Remark 8.2], recalling that t is fixed and p≥p1,

(17) P(XG−R(n−r, p) ≥ t̃μ(G−R, n−r, p)) ≤ exp(−c3(t̃−1)2n2).

Further,

t̃−1 = tpeR(G) −1 =
(

p

p1

)eR(G)

−1 ≥ p

p1
−1 ≥ p−p1,

so (16)–(17) yield

(18) P(XR
G ≥ tμ) ≤ exp(−c3(p−p1)2n2).

The upper bound in (c) now follows by taking the geometric mean of (14) and (18),
noting that in this range of p, MR,G=Θ(n) as remarked in (vii) above.

Lower bounds. Let H be a subgraph of G such that e(H)>0 and

M :=MR,G =(ΨR
H)1/α∗(H−R).

Since we consider parts (b) and (c) only, M ≥1 by (10).
Set p0=(3vGt)−1 and assume first that p≤p0. (Note that p0<t−1 ≤p1.) We

construct, as in [4], a graph F with

(19) v(F ) ≤ 3(vG −r)tM, e(F ) =O(M), and N(F, H −R) ≥ 2tΨR
H .

This is done as follows. Let {xi}i∈V (H−R) be an optimal assignment for the frac-
tional independence problem, that is, 0≤xi ≤1, xi+xj ≤1 for every edge ij ∈H −R,
and

∑
i xi=α∗(H −R). Construct F by blowing up each vertex of H −R to a set of

	2tMxi 
 vertices and replacing each edge of H −R by the complete bipartite graph.
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This yields (19), where we have put 3 rather than 2 because of the ceiling. Now,
by (11),

v(F ) ≤ 3(vG −r)tM ≤ 3(vG −r)tnp ≤ (1−r/vG)n ≤ n−r.

We may thus fix a copy F1 of F with V (F1)⊆[n]\[r]; we further let F2 be F1

enlarged by adding all roots 1, ..., r together with all rv(F1)=O(M) edges between
the roots and V (F1). Now, exactly as in [4], it follows from [4, Lemma 3.3] that

P(XR
G ≥ tμ) ≥ 1

4pe(G)
P(G(n, p) ⊇ F2) = 1

4pe(G)+e(F2) = pΘ(M).

This proves the lower bound in (b) when p≤p0.
Assume now that p0 ≤p≤p2 and note that the lower bound we want to prove

can be written as exp(−Θ(n)), see (vii) above or Corollary 3.2.
Consider first the case e(G−R)=0 and observe that then the maximum number

of copies of G are obtained as soon as all edges from the roots appear, so, denoting
this event by E R,

P(XR
G ≥ tμ) ≥ P(E R) = pr(n−r) ≥ e−C5n,

which proves the lower bound in (b) in this case. (Since e(G−R)=0 implies p1=p2,
(c) is trivial.)

Thus, it remains to consider the case when p0 ≤p≤p2 and e(G−R)>0. We
note first the trivial bound

(20) P(XR
G ≥ tμ) ≥ P(G(n, p) =Kn) = p(n

2) ≥ e−C6n2
.

Let Z be the number of edges in G(n−r, p). Since Z has binomial distribution
Bin

((
n−r

2

)
, p

)
with mean p

(
n−r

2

)
, it is easily seen that if (1+3δ)p≤1, and Eδ is the

event
{
Z ≥(1+3δ)p

(
n−r

2

)}
, then

(21) P(Eδ) ≥ c4 exp(−C7n
2δ2).

(The Chernoff bounds are essentially sharp, as is easily seen using Stirling’s for-
mula.) The number XG−R(n−r, p) of copies of G−R in G(n−r, p) is a sum of
N(Kn−r, G−R) indicator variables Iα. Conditioned on Z=z, each of them has the
expectation

(22) P(Iα =1 | Z = z) =
(z)e(G−R)

((
n−r

2

))
e(G−R)

=
(

z
(
n−r

2

)

)e(G−R)

(1−O(z−1)).
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Let Nδ :=(1+3δ)p
(
n−r

2

)
. If δ ≥n−1, z ≥Nδ , and n is large enough, then (22) yields

P(Iα =1 | Z = z) ≥ (1+3δ)e(G−R)pe(G−R)(1−O(n−2))

≥ (1+2δ)pe(G−R).

Consequently, if δ ≥n−1 and n is large enough, then P(Iα=1| Eδ)≥(1+2δ)pe(G−R),
and summing over α we find

E(XG−R(n−r, p) | Eδ) ≥ (1+2δ) E XG−R(n−r, p)= (1+2δ)μ(G−R).

Hence, by Lemma 3.2 of [4], as in the proof of Lemma 3.3 therein, with 1
2 replaced

by (1+δ)/(1+2δ), we obtain

P(XG−R ≥ (1+δ)μ(G−R) | Eδ) ≥
(

δ

1+2δ

)2
μ(G−R)

N(Kn−r, G−R)
≥ c5δ

2.

Assuming also the presence of all edges from the roots, i.e., the event E R, we have
XR

G =gXG−R (where g is as in the proof of the upper bound); further, by (15),
μ=gμ(G−R)peR(G); hence the inequality XG−R ≥(1+δ)μ(G−R) is equivalent to

(23) XR
G ≥ (1+δ)p−eR(G)μ.

Consequently,

P(XR
G ≥ (1+δ)p−eR(G)μ | E R, Eδ) ≥ P(XG−R ≥ (1+δ)μ(G−R) | Eδ) ≥ c5δ

2

and thus, by (21),

P(XR
G ≥ (1+δ)p−eR(G)μ) ≥ c5δ

2
P(Eδ and E R) = c5δ

2
P(Eδ) P(E R)

≥ c6n
−2 exp(−C7δ

2n2)prn =exp(−Θ(δ2n2+n)),

provided 1/n≤δ ≤ 1
3 (p−1 −1) and n is large enough.

For p0 ≤p≤p1, we choose δ=n−1; then the right-hand side of (23) is greater
than p

−eR(G)
1 μ=tμ, so we obtain

P(XR
G ≥ tμ) ≥ exp(−Θ(n)),

which as remarked above is equivalent to the lower bound in (b) for this range of p.
Finally, if p1 ≤p≤p2, we take

δ :=max
{

tpeR(G) −1,
1
n

}

=max
{(

p

p1

)eR(G)

−1,
1
n

}

=Θ
(

p−p1+
1
n

)

,

so that the right-hand side of (23) is again at least tμ. This yields the lower
bound in (c) when n is large enough and p≥p1 is small enough to guarantee that
δ ≤ 1

3 (p−1 −1). For larger p, as well as for small n, we simply use (20). This completes
the proof of the lower bound in (c). �



A
U

T
H

O
R

’S
 P

R
O

O
F

Journal ID: 11512, Article ID: 117, Date: 2010-02-04, Proof No: 1

U
N

CO
RREC

TE
D

 P
RO

O
F

<< AFM 11512 layout: SPEC (afm)reference style: afm file: afm117.tex (Judita) aid: 117 doctopic: OriginalPaper class: spr-spec-afm v.201
Prn:2010/02/04; 9:51 p. 15/18>>

Upper tails for counting objects in randomly induced subhypergraphs

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

3.1. Examples and remarks

It is easy to see that the minimum defining M=MR,G in (8) is achieved by a
subgraph H of G such that H −R is connected and, for every vertex v ∈H , H con-
tains all edges leading from v to R. These observations simplify computations of
the bounds in Theorem 3.1.

Example 3.3. (Cliques rooted at a vertex.) Let G=Kk, k ≥2, and r=|R|=1.
Then mR(G)=k/2 and eR(G)=k −1. To find M , consider first the candidates
H=K2 (with the root contained in H) and H=G=Kk. For H=K2, we have, as
shown in general in comment (v) above, (ΨR

H)1/α∗(H−R)=np. For H=Kk we have
ΨKk

=nk−1p(k
2) and α∗(Kk −R)=α∗(Kk−1)=(k −1)/2, and thus (ΨR

Kk
)1/α∗(Kk −R)=

n2pk. Hence,

(24) M ≤ min{np, n2pk };

we will show that equality holds.
To this end, consider a general H ⊆G with e(H −R)>0 and let F :=H −R.

Then e(H)≤e(F )+v(F ) and so, see (7),

ΨR
H

(np)α∗(H−R)
≥ nv(F )pe(F )+v(F )

(np)α∗(F )
(25)

= (npk−1)v(F )−α∗(F )pe(F )−(k−2)(v(F )−α∗(F ))

and, dividing (25) by (npk−1)α∗(H−R),

(26)
ΨR

H

(n2pk)α∗(H−R)
≥ (npk−1)v(F )−2α∗(F )pe(F )−(k−2)(v(F )−α∗(F )).

Since 1
2v(F )≤α∗(F )≤v(F ), we have v(F )−α∗(F )≥0 while v(F )−2α∗(F )≤0, so

(npk−1)v(F )−α∗(F ) ≥1 if npk−1 ≥1 and (npk−1)v(F )−2α∗(F ) ≥1 if npk−1 ≤1. Further,
by [4, Lemma 6.1], since F ⊆G−R=Kk−1, we have e(F )≤(k −2)(v(F )−α∗(F )),
and thus pe(F )−(k−2)(v(F )−α∗(F )) ≥1 for all p∈(0, 1]. Consequently, at least one of
the right-hand sides of (25) and (26) is ≥1, so

ΨR
H ≥ min{(np)α∗(H−R), (n2pk)α∗(H−R)},

or (ΨR
H)1/α∗(H−R) ≥min{np, n2pk }. Finally, by (8) and (24),

M =min{np, n2pk } =

{
n2pk, p≤n−1/(k−1),

np, p≥n−1/(k−1).
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Example 3.4. (Bipartite graphs rooted at one whole side.) These are exactly
the graphs with e(G−R)=0, and so p1=p2 (see comment (iii) after Theorem 3.1).
The two classes of the bipartition are R and S=V (G)\R. Since the only connected
subgraph of G−R is K1, and α∗(K1)=1, we have from (8) and the comments
above that M=npΔS(G), where ΔS(G):=maxv∈S dG(v) is the maximum degree in
G among all the vertices of S. Consequently, the upper bound in part (b) of
Theorem 3.1 is of the form

P(XR
G ≥ tμ) ≤ exp(−Θ(npΔS(G))).

It follows from the above example that the bounds on P(XR
G ≥tμ) for Ks,2 with

r=2 and for even cycles C2s with r=s are the same, since in both cases ΔS(G)=2.
This is a special case of a more general phenomenon that the bounds depend only
on the structure of G−R and the degree sequence |NG(v)∩R|, v ∈V (G)\R. Our
next example provides one more instance of that.

Example 3.5. (Paths rooted at the endpoints and cycles rooted at a vertex.)
Let G=Pk be a path with k vertices, k ≥3, and let R be the set of its two endpoints.
Then mR(G)=(k −1)/(k −2), and so p≥n−1/mR(G) implies that np→∞ as n→∞.
The minimum in M can be achieved only on a subpath H on at most k −2 vertices
containing one root, or H=Pk. So,

M =min
{

min
1≤l≤k−3

(nlpl)1/�l/2�, (nk−2pk−1)1/�(k−2)/2�
}

.

The terms with even l are all equal to (np)2 while for odd l they are equal to
(np)2l/(l+1), which means that the smallest among them is np, the term corre-
sponding to a single rooted edge. Hence, for even k, M=np if p≥n−(k−2)/k, and
otherwise M=n2p2(k−1)/(k−2), the term corresponding to H=G. A similar cutoff
for odd k occurs at n−(k−3)/(k−1) with M taking the values of n2(k−2)/(k−1)p2 and
np, in turn.

Finally, note that if R′ is a single vertex in a cycle Ck−1, with k ≥4, then
mR′ (Ck−1)=mR(Pk), ΨR′

Ck−1
=ΨR

Pk
, α∗(Ck−1 −R′)=α∗(Pk −R), and the same is

true for all other candidates for the minimum in M , that is, paths with a root
at one end. Thus, MR′,Ck−1 =MR,Pk

and the upper tail bounds provided by Theo-
rem 3.1 are the same for these two rooted graphs.

Remark 3.6. In the unrooted case, the lower tails are typically much smaller
than the upper tails (see Remark 8.3 in [4]), and at best they can be of the same
order of magnitude, e.g., when p is fixed. Here, we encounter an opposite situation.
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Namely, for every (R, G) with eR(G)>0 and a fixed p, by the Fortuin–Kasteleyn–
Ginibre inequality, we have for any t>1

P(XR
G ≤ tμ) ≥ P(XR

G =0) ≥ P(eR(G(n, p))= 0)= exp(−Θ(n))

while for t>1 and p1<p≤p2, by Corollary 3.2,

P(XR
G ≥ tμ)= exp(−Θ(n2)).

Remark 3.7. If there are no isolated vertices in H −R and n≥v(H) and
m≥e(H), then (12) may be improved to

(27) NR(n, m, H)=Θ(N(n, m, H −R))= Θ(N(min{n, 2m}, m, H −R)).

Note, however, that this fails if H contains a vertex all of whose neighbors are among
the roots; for example if H is a rooted edge and n>m, then NR(n, m, H)=m and
N(n, m, H −R)=n.

For the lower bound in (27), take a graph F0 (with V (F0)∩R=∅) which
achieves the maximum in N(n−r, m/3r, H −R); we may assume that F0 has no
isolated vertices, and thus at most 2m/3r vertices. Then join all vertices of R to all
vertices of F0, obtaining a graph F1 which contains R, has at most n vertices, at
most m/3r+r2m/3r ≤m edges, and is such that NR(F1, H)≥N(F0, H −R). Hence,
NR(n, m, H)≥N(n−r, m/3r, H −R). Finally, provided m≥3re(H −R), we use the
fact proved in [4] that if n′ =Θ(n), m′ =Θ(m), n, n′ ≥v(H), and m, m′ ≥e(H), then
N(n′, m′, H)=Θ(N(n, m, H)) (this follows directly from [4, Theorem 1.3]). The
case e(H)≤m<3re(H −R) is trivial, since then both sides of (27) are Θ(1).

References

1. Dudek, A., Polcyn, J. and Ruciński, A., Subhypergraph counts in extremal and
random hypergraphs and the fractional q-independence, to appear in J. Comb.
Optim.

<uncited>2. Friedgut, E. and Kahn, J., On the number of copies of one hypergraph in another,
Israel J. Math. 105 (1998), 251–256.
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