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a b s t r a c t

Let P denote a 3-uniform hypergraph consisting of 7 vertices a, b, c, d, e, f , g and 3 edges
{a, b, c}, {c, d, e}, and {e, f , g}. It is known that the r-color Ramsey number for P is
R(P; r) = r + 6 for r ⩽ 7. The proof of this result relies on a careful analysis of the Turán
numbers for P . In this paper, we refine this analysis further and compute, for all n, the third
and fourth order Turán numbers for P . With the help of the former, we confirm the formula
R(P; r) = r + 6 for r ∈ {8, 9}.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

For brevity, 3-uniform hypergraphs will be called here 3-graphs. Given a family of 3-graphs F , we say that a 3-graph H
is F-free if for all F ∈ F we have H ̸⊇ F .

For a family of 3-graphs F and an integer n ⩾ 1, the Turán number of the 1st order, that is, the ordinary Turán number, is
defined as

ex(1)(n;F) = max{|E(H)| : |V (H)| = n and H is F -free }.

Every n-vertex F-free 3-graph with ex(1)(n;F) edges is called 1-extremal for F . We denote by Ex(1)(n;F) the family of all,
pairwise non-isomorphic, n-vertex 3-graphs which are 1-extremal for F . Further, for an integer s ⩾ 1, the Turán number of
the (s + 1)-st order is defined as

ex(s+1)(n;F) = max{|E(H)| : |V (H)| = n, H is F-free, and ∀H ′
∈ Ex(1)(n;F) ∪ · · · ∪ Ex(s)(n;F),H ̸⊆ H ′

},

if such a 3-graph H exists. Note that if ex(s+1)(n;F) exists then, by definition,

ex(s+1)(n;F) < ex(s)(n;F). (1)

An n-vertex F-free 3-graph H is called (s + 1)-extremal for F if |E(H)| = ex(s+1)(n;F) and ∀H ′
∈ Ex(1)(n;F) ∪ · · · ∪

Ex(s)(n;F),H ̸⊆ H ′; we denote by Ex(s+1)(n;F) the family of n-vertex 3-graphs which are (s+ 1)-extremal for F . In the case
when F = {F}, we will write F instead of {F}.

A loose 3-uniform path of length 3 is a 3-graph P consisting of 7 vertices, say, a, b, c, d, e, f , g , and 3 edges {a, b, c}, {c, d, e},
and {e, f , g}. The Ramsey number R(P; r) is the least integer n such that every r-coloring of the edges of the complete 3-graph
Kn results in a monochromatic copy of P . Gyárfás and Raeisi [6] proved, among many other results, that R(P; 2) = 8. (This
result was later extended to loose paths of arbitrary lengths, but still r = 2, in [13].) Then Jackowska [9] showed that
R(P; 3) = 9 and r +6 ⩽ R(P; r) for all r ⩾ 3. In turn, in [10] and [11], Turán numbers of the first and second order, ex(1)(n; P)
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and ex(2)(n; P), have been determined for all feasible values of n, as well as the single third order Turán number ex(3)(12; P).
Using these numbers, in [11], we were able to compute the Ramsey numbers R(P; r) for r = 4, 5, 6, 7.

Theorem 1 ([6,9,11]). For all r ⩽ 7, R(P; r) = r + 6.

In this paper we determine, for all n ⩾ 7, the Turán numbers for P of the third and the fourth order, ex(3)(n; P) and
ex(4)(n; P). The former allows us to compute two more Ramsey numbers.

Theorem 2. For all r ⩽ 9, R(P; r) = r + 6.

It seems that in order to make a further progress in computing the Ramsey numbers R(P; r), r ⩾ 10, one would need
to determine higher order Turán numbers ex(s)(n; P), at least for some small values of n. Unfortunately, the fourth order
numbers are not good enough.

Throughout, we denote by Sn the 3-graph on n vertices andwith
(n−1

2

)
edges, inwhich one vertex, referred to as the center,

forms edges with all pairs of the remaining vertices. Every sub-3-graph of Sn without isolated vertices is called a star, while
Sn itself is called the full star. We denote by C the triangle, that is, a 3-graph with six vertices a, b, c, d, e, f and three edges
{a, b, c}, {c, d, e}, and {e, f , a}. Finally,M stands for a pair of disjoint edges.

In the next section we state all, known and new, results on ordinary and higher order Turán numbers for P , including
Theorem9which provides a complete formula for ex(3)(n; P).We also define conditional Turán numbers and quote from [11]
three useful lemmas about the conditional Turán numbers with respect to P , C , M . Then, in Section 3, we prove Theorem 2,
while the remaining sections are devoted to proving Theorem 9.

2. Turán numbers

A celebrated result of Erdős, Ko, and Rado [2] asserts that for n ⩾ 6, ex(1)(n;M) =
(n−1

2

)
. Moreover, for n ⩾ 7,

Ex(1)(n;M) = {Sn}. We will need the second order version of this Turán number, together with the 2-extremal family. Such
a result has been proved already by Hilton and Milner [8, Theorem 3, s = 1] (see [4] for a simple proof). For a given set of
vertices V , with |V | = n ⩾ 7, let us define two special 3-graphs. Let x, y, z, v ∈ V be four different vertices of V . We set

G1(n) = {{x, y, z}} ∪

{
h ∈

(
V
3

)
: v ∈ h, h ∩ {x, y, z} ̸= ∅

}
,

G2(n) = {{x, y, z}} ∪

{
h ∈

(
V
3

)
: |h ∩ {x, y, z}| = 2

}
.

Note that for i ∈ {1, 2}, Gi(n) ̸⊃ M and |Gi(n)| = 3n − 8.

Theorem 3 ([8]). For n ⩾ 7, ex(2)(n;M) = 3n − 8 and Ex(2)(n;M) = {G1(n),G2(n)}.

Later, we will also use the fact that C ⊂ Gi(n) ̸⊃ P , i = 1, 2.
Recently, the third order Turán number for M has been established by Han and Kohayakawa. Let G3(n) be the 3-graph

on n vertices, with distinguished vertices x, y1, y2, z1, z2 whose edge set consists of all edges spanned by x, y1, y2, z1, z2
except for {y1, y2, zi}, i = 1, 2, and all edges of the form {x, zi, v}, i = 1, 2, where v ̸∈ {x, y1, y2, z1, z2}. Note that
|G3(n)| = 8 + 2(n − 5) = 2n − 2.

Theorem 4 ([7, Theorem 1.6]). For n ⩾ 7, ex(3)(n;M) = 2n − 2 and Ex(3)(n;M) = {G3(n)}.

Interestingly, the number
(n−1

2

)
serves as the Turán number for two other 3-graphs, C and P . The Turán number ex(1)(n; C)

has been determined in [3] for n ⩾ 75 and later for all n in [1].

Theorem 5 ([1]). For n ⩾ 6, ex(1)(n; C) =
(n−1

2

)
. Moreover, for n ⩾ 8, Ex(1)(n; C) = {Sn}.

For large n, the Turán numbers for longer (than three) loose 3-uniform paths were found in [12]. The case of length three
has been omitted in [12], probably because the authors thought it had been taken care of in [5], where k-uniform loose paths
were considered, k ⩾ 4. However, the method used in [5] did not quite work for 3-graphs. In [10] we fixed this omission.
Given two 3-graphs F1 and F2, by F1 ∪ F2 denote a vertex-disjoint union of F1 and F2. If F1 = F2 = F we will sometimes write
2F instead of F ∪ F .

Theorem 6 ([10]).

ex(1)(n; P) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
n
3

)
and Ex(1)(n; P) = {Kn} for n ⩽ 6 ,

20 and Ex(1)(n; P) = {K6 ∪ K1} for n = 7 ,(
n − 1
2

)
and Ex(1)(n; P) = {Sn} for n ⩾ 8 .
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Fig. 1. The comet Co(n).

Interestingly, although the ordinary Turán numbers for the 2-matching M and the 3-path P are equal for n ⩾ 8,
their higher order counterparts differ significantly, being, respectively, of linear and quadratic order in n. In [11] we have
completely determined the second order Turán number ex(2)(n; P), together with the corresponding 2-extremal 3-graphs. A
comet Co(n) is an n-vertex 3-graph consisting of the complete 3-graph K4 and the full star Sn−3, sharing exactly one vertex
which is the center of the star (see Fig. 1). This vertex is called the center of the comet, while the set of the remaining three
vertices of the K4 is called its head.

Theorem 7 ([11]).

ex(2)(n; P) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

15 and Ex(2)(n; P) = {S7} for n = 7,

20 +

(
n − 6
3

)
and Ex(2)(n; P) = {K6 ∪ Kn−6} for 8 ⩽ n ⩽ 12,

40 and Ex(2)(n; P) = {2K6 ∪ K1, Co(13)} for n = 13,

4 +

(
n − 4
2

)
and Ex(2)(n; P) = {Co(n)} for n ⩾ 14.

Note that for n ⩽ 6 the second order number is not defined, since each 3-graph is a sub-3-graph of Kn. The main message
behind the above result is that for n ⩾ 8 it provides an upper bound on the number of edges in an n-vertex P-free 3-graph
which is not a star.

Also in [11], we managed to calculate the third order Turán number for P and n = 12.

Theorem 8 ([11]).

ex(3)(12; P) = 32 and Ex(3)(12; P) = {Co(12)}.

The main Turán-type result of this paper provides a complete formula for the third order Turán number for P .

Theorem 9.

ex(3)(n; P) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

3n − 8 and Ex(3)(n; P) = {G1(n),G2(n)} for 7 ⩽ n ⩽ 10,
25 and Ex(3)(n; P) = {G1(n),G2(n), Co(n)} for n = 11,
32 and Ex(3)(n; P) = {Co(n)} for n = 12,

20 +

(
n − 7
2

)
and Ex(3)(n; P) = {K6 ∪ Sn−6} for 13 ⩽ n ⩽ 14,

4 +

(
n − 5
2

)
and Ex(3)(n; P) = {K4 ∪ Sn−4} for n ⩾ 15.

In particular, for n ⩾ 14, Theorem 9 gives an upper bound on the number of edges in an n-vertex P-free 3-graph which is
neither a star nor is contained in the comet Co(n).

Surprisingly, as an immediate consequencewe obtain an exact formula for the 4th Turán number for P , at least for n ⩾ 15.
Indeed, consider the 3-graph Ro(n), called rocket, obtained from the star Sn−4 with center x by adding to it 4 more vertices,
say, a, b, c, d, and three edges: {x, a, b}, {a, b, c}, {a, b, d}. Clearly, |Ro(n)| = |K4 ∪ Sn−4| − 1, Ro(n) ̸⊂ Sn, Ro(n) ̸⊂ Co(n), and
Ro(n) ̸⊂ K4 ∪ Sn−4. Hence, ex(4)(n; P) ⩾ ex(3)(n; P) − 1, but, in view of inequality (1), the two numbers cannot be equal.

In a similar fashion, by choosing an appropriate 4-extremal 3-graph, one can show that ex(4)(7; P) = ex(3)(7; P) − 1 and
ex(4)(14; P) = ex(3)(14; P)−1. With some additional effort we were also able to calculate the remaining values of ex(4)(n; P)
and determine the families Ex(4)(n; P) of 4-extremal 3-graphs. As these numbers are, however, of no use for calculating the
respective Ramsey numbers, we state Theorem 10 without proof. Let K+2

5 be the 3-graph obtained from K5 by fixing two of
its vertices, say a, b, and adding two more vertices c, d and two edges {a, b, c} and {a, b, d}.
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Theorem 10.

ex(4)(n; P) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

12 and Ex(4)(n; P) = {G3(n), K+2
5 } for n = 7,

2n − 2 and Ex(4)(n; P) = {G3(n)} for 8 ⩽ n ⩽ 9,
20 and Ex(4)(n; P) = {K5 ∪ K5} for n = 10,
20 and Ex(4)(n; P) = {G3(n)} for n = 11,
28 and Ex(4)(n; P) = {G1(n),G2(n)} for n = 12,
33 and Ex(4)(n; P) = {K6 ∪ G1(n), K6 ∪ G2(n)} for n = 13,
40 and Ex(4)(n; P) = {2K6 ∪ 2K1, K4 ∪ S10} for n = 14,
48 and Ex(4)(n; P) = {Ro(n), K6 ∪ S9} for n = 15,

3 +

(
n − 5
2

)
and Ex(4)(n; P) = {Ro(n)} for n ⩾ 16.

To determine Turán numbers, it is sometimes useful to rely on Theorem3 and divide all 3-graphs into thosewhich contain
M and those which do not. To this end, it is convenient to define conditional Turán numbers (see [10,11]). For a family of
3-graphs F , an F-free 3-graph G, and an integer n ⩾ |V (G)|, the conditional Turán number is defined as

ex(n;F|G) = max{|E(H)| : |V (H)| = n, H is F -free, and H ⊇ G}.

Every n-vertex F-free 3-graph H with ex(n;F|G) edges and such that H ⊇ G is called G-extremal for F . We denote by
Ex(n;F|G) the family of all n-vertex 3-graphs which are G-extremal for F . (If F = {F}, we simply write F instead of {F}.)

To illustrate the above mentioned technique, observe that for n ⩾ 7

ex(2)(n; P) = max{ex(n; P|M), ex(2)(n;M)} Thm 3
= max{ex(n; P|M), 3n − 8} = ex(n; P|M),

the last equality holding for sufficiently large n (see [11, Proof of Theorem 6] for details).
In the proof of Theorem 9 we will use the following three lemmas, all proved in [11]. For the first one we need one more

piece of notation. If, in the above definition, we restrict ourselves to connected 3-graphs only (connected in the weakest,
obvious sense) then the corresponding conditional Turán number and the extremal family are denoted by exconn(n;F|G)
and Exconn(n;F|G), respectively.

Lemma 1 ([11, Lemma 1]). For n ⩾ 7,

exconn(n; P|C) = 3n − 8 and Exconn(n; P|C) = {G1(n),G2(n)}.

Lemma 1 as stated in [11] does not provide family Exconn(n; P|C). However, it is clear from its proof that the C-extremal
3-graphs are the same as in Theorem 3.

Lemma 2 ([11, Theorem 10]).

ex(n; {P, C}|M) =

⎧⎪⎨⎪⎩
2n − 4 for 6 ⩽ n ⩽ 9,
20 for n = 10,

4 +

(
n − 4
2

)
and Ex(n; {P, C}|M) = {Co(n)} for n ⩾ 11.

Lemma 3 ([11, Lemma 2]). For n ⩾ 6

ex(n; {P, C, P2 ∪ K3}|M) = 2n − 4,

where P2 is a pair of edges sharing one vertex.

3. Proof of Theorem 2

As mentioned in the Introduction, the inequality R(P; r) ⩾ r + 6, r ⩾ 1, has been already observed in [9]. We are going to
show that R(P; r) ⩽ r + 6 for 8 ⩽ r ⩽ 9. Along the way, we need to strengthen the results for 3 ⩽ r ⩽ 7 as follows. Let Kn − e
denote the 3-graph with n vertices and

(n
3

)
− 1 edges, while Kn − 2e denote each of the three possible (up to isomorphism)

3-graphs with n vertices and
(n
3

)
− 2 edges. Write H → (P; r) if every r-coloring of the edges of H yields a monochromatic

copy of P .

Lemma 4. For every n = 9, . . . , 13, Kn − 2e → (P; n − 6).

Proof. A coloring which does not yield a monochromatic copy of P is referred to as proper. Below, for each nwe assume that
there is a proper coloring of Kn − 2e and arrive at a contradiction.
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n = 9: For every 3-coloring of K9 −2e there is a color with at least 28 edges and thus, if it is proper, then, by Theorem 6, that
color must form a full star. After removing the center of that star, we obtain a proper 2-coloring of K8 − 2e, which, again by
Theorem 6, contains a monochromatic copy of P , a contradiction.
n = 10: For every 4-coloring of K10 − 2e there is a color with at least 30 edges and thus, if it is proper, then, by Theorems 6
and 7, that color must form a star. After removing the center of that star we are back to the n = 9 case.
n = 11: For every 5-coloring of K11 − 2e there is a color with at least 33 edges and thus, if it is proper, then, again by
Theorems 6 and 7, that color must form a star. After removing the center of that star we are back to the n = 10 case.

We leave the most difficult case of n = 12 to the end of the proof.
n = 13: For every 7-coloring of K13 − 2e there is a color with at least 41 edges and thus, if it is proper, then, one more time
by Theorems 6 and 7, that color must form a star. After removing the center of that star we jump to the n = 12 case.
n = 12: Consider a 6-coloring of K12 − 2e. If a color forms a star, then, after removing its center, we obtain a 5-coloring
of K11 − 2e (or K11 − e or K11) which, as we have already proved, contains a monochromatic copy of P . Thus, from now
on we assume no color class forms a star. Consequently, by Theorems 6–8, every color class with more then 32 edges is a
sub-3-graph of K6 ∪ K6. Since there is a color with at least 37 edges, it must be, as explained above, contained in a copy of
K6 ∪ K6. After removing that copy of K6 ∪ K6, we are looking at a proper 5-coloring of a complete, 6 by 6 bipartite 3-graph
H , with possibly up to two edges missing. As |H| ⩾ 220 − 40 − 2 = 178, the average number of edges per color is at least
35.6. On the other hand no color may have been applied to more than 36 edges. The reason is that, as explained above, such
a color class would need to be a sub-3-graph of a copy of K6 ∪ K6, but it is easy to check that every copy of K6 ∪ K6 shares
at most 36 edges with H . This implies that among the five color classes at least three have size 36. But it was shown already
in [11] (proof of Theorem 1, case r = 6) that the coexistence of three disjoint sub-3-graphs in H , each having 36 edges and
contained in a copy of K6 ∪ K6, is impossible. □

Proof of Theorem 2. In the case r = 8 we are going to prove a little stronger result to be used in the case r = 9.
r = 8: For every 8-coloring of K14 − e there is a color with at least 46 edges, and thus, if it is proper, then, by Theorems 6, 7,
and 9, that color must either form a star or be a sub-3-graph of the comet Co(14). In either case, we remove the center of the
structure in question, a star or a comet, and in addition, if it is the comet, the edge spanned by its head. We get a 7-coloring
of K13 −e or K13 −2ewhich, by Lemma 4, yields amonochromatic copy of P , a contradiction. It follows that K14 −e → (P; 8),
and so, K14 → (P; 8) too. Hence, we have proved Theorem 2 for r = 8.
r = 9: For every 9-coloring of K15 there is a color with at least 51 edges, and thus, if it is proper, then, again by Theorems 6, 7,
and 9, that color must form a sub-3-graph of S15 or Co(15). Similarly to the case r = 8, we remove a vertex and possibly an
edge, to obtain an 8-coloring ofK14 orK14−e, which, by the case r = 8 yields amonochromatic copy of P , a contradiction. □

4. Proof of Theorem 9

For n = 12, Theorem 9 has been already proved in [11] (cf. Theorem 8 in Introduction). Therefore, it seems natural to
divide the proof into two ranges of n: smaller than 12 and larger than 12. The general set-up is, however, the same for both.
We first check that all candidates for being 3-extremal 3-graphs do qualify, that is, are P-free, are not contained in any of the
1-extremal or 2-extremal 3-graphs with the same number of vertices, and have the number of edges given by the formula
to be proved. Then, we consider an arbitrary n-vertex, qualifying 3-graph H and show that unless it is one of the candidate
3-extremal 3-graphs itself, its number of edges is strictly smaller than theirs.

For the latter task, we distinguish two cases: when H is connected and disconnected. The entire proof is inductive, in the
sense that here and there we apply the very Theorem 9 for smaller instances of n, once they have been confirmed.

4.1. 7 ⩽ n ⩽ 11

First note that by Theorems 6 and 7, for 7 ⩽ n ⩽ 11

Ex(1)(n; P) ∪ Ex(2)(n; P) = {Sn, K6 ∪ Kn−6}.

Moreover, for i ∈ {1, 2}, Gi(n) ̸⊆ Sn and Gi(n) ̸⊆ K6 ∪ Kn−6. Consequently, since Gi(n) is P-free,

ex(3)(n; P) ⩾ |Gi(n)| = 3n − 8.

We are going to show that, in fact, the 3-graphs Gi(n), i ∈ {1, 2} are the only 3-extremal 3-graphs for n ⩽ 10, whereas, for
n = 11, in addition, the comet Co(11) ∈ Ex(3)(11; P).

For 7 ⩽ n ⩽ 11, let H be an n-vertex P-free 3-graph, satisfying

H ̸⊆ Sn and H ̸⊆ K6 ∪ Kn−6. (2)

We first assume that H is connected. If H ⊃ C or H ̸⊃ M then, by, respectively, Lemma 1 or Theorem 3,

|H| ⩽ 3n − 8,
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with the equality for H = Gi(n), i ∈ {1, 2} only. Otherwise,

|H| ⩽ ex(n; {P, C}|M) ⩽ 3n − 8,

where the second inequality holds by Lemma 2, and it becomes equality only if n = 11 and H = Co(11).
Next, we show that if a P-free 3-graph H satisfying (2) is disconnected, then |H| < 3n − 8. Let m = m(H) be the number

of vertices in the smallest component of H . Since n ⩽ 11, we have m ⩽ 5. Moreover, m ̸= 2, since no component of a
3-graph may have two vertices. Thus,m ∈ {1, 3, 4, 5}. Note also that, as a consequence of the second part of (2), no union of
components of H may have 6 vertices together. Consequently,m ̸= n − 6. We now break the proof into several cases.

If n = 7, we must havem = 3 and thus,

|H| ⩽ 1 + 4 < 3n − 8 = 13.

For n ⩾ 8, if m = 1, that is, if there is an isolated vertex v in H , then H − v still satisfies (2) with n − 1 instead of n, and, by
induction,

|H| ⩽ ex(3)(n − 1; P) ⩽ 3(n − 1) − 8 < 3n − 8.

Ifm = 3, then, for n = 8, 10, 11, we apply the bound

|H| ⩽ 1 + ex(1)(n − 3; P) < 3n − 8,

where the last inequality follows by Theorem 6. Ifm = 4, we have, similarly,

|H| ⩽ 4 + ex(1)(n − 4; P) < 3n − 8,

for n = 8, 9, 11. Finally, ifm = 5 (and n = 10), |H| ⩽ 2×
(5
3

)
< 22.

4.2. n ⩾ 13

By Theorems 6 and 7,

Ex(1)(13; P) ∪ Ex(2)(13; P) = {S13, Co(13), K6 ∪ K6 ∪ K1},

while for n ⩾ 14,

Ex(1)(n; P) ∪ Ex(2)(n; P) = {Sn, Co(n)}.

Therefore, to determine ex(3)(n; P) for n ⩾ 13 we have to find the largest number of edges in an n-vertex P-free 3-graph H
such that H ̸⊆ Sn, H ̸⊆ Co(n) and for n = 13, in addition, H ̸⊆ K6 ∪ K6 ∪ K1. The 3-graphs

Hn := K6 ∪ Sn−6 for n ∈ {13, 14} and Hn := K4 ∪ Sn−4 for n ⩾ 15

satisfy all the above conditions. Hence, for n ⩾ 13,

ex(3)(n; P) ⩾ |Hn|.

We are going to show that also the opposite inequality holds, as well as, that the equality holds for Hn only.
To this end, let H ̸= Hn be an n-vertex P-free 3-graph such that

H ̸⊆ Sn, and H ̸⊆ Co(n), (3)

and for n = 13, in addition, H ̸⊆ K6 ∪ K6 ∪ K1. We will show that |H| < |Hn|.
Assume first that H is connected. If, in addition, H ⊃ C or H ̸⊃ M , then, by, respectively, Lemma 1 or Theorem 3,

|H| ⩽ 3n − 8 < |Hn|.

Otherwise, H is a {P, C}-free, connected 3-graph containingM . Since, by Lemma 3,

ex(n; {P, C, P2 ∪ K3}|M) = 2n − 4 < |Hn|,

we may assume that P2 ∪ K3 ⊂ H . Thus, the connected case will be completed once we have proved the following lemma.

Lemma 5. For n ⩾ 13, if H is an n-vertex, connected, {P, C}-free 3-graph such that H ⊃ P2∪K3 and H ̸⊆ Co(n), then |H| < |Hn|.

(Note that for n = 13, the additional requirement that H ̸⊆ K6 ∪ K6 ∪ K1 is, due to connectedness, fulfilled automatically.)
We devote the last two subsections of Section 4 to prove Lemma 5. Meanwhile, taking Lemma 5 for granted, let us quickly

complete the proof of Theorem 9. Assume that H is disconnected and, as before, let m = m(H) be the order of the smallest
component of H , 1 ⩽ m ⩽ n−m,m ̸= 2. Below, to bound |H|, we use the Turán numbers for P of the 1st, 2nd, and 3rd order
and utilize, respectively, Theorems 6 and 7, and 9 (per induction).
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If v is an isolated vertex (m = 1), then, similarly as for small n,H −v satisfies (3), because otherwise H would not. Hence,
for n ⩾ 15,

|H| ⩽ ex(3)(n − 1; P) < |Hn|.

For n = 14, we cannot guarantee that H − v ̸⊂ K6 ∪ K6 ∪ K1, so we use the second order Turán number instead which still
does the job:

|H| ⩽ ex(2)(13; P) = 40 < 41 = |H14|.

To complete the casem = 1 notice that for n = 13, since H ̸⊆ K6 ∪K6 ∪K1, we have H − v ̸⊆ K6 ∪K6, and we are in position
to use induction again. Hence,

|H| ⩽ ex(3)(12; P) = 32 < 35 = |H13|.

Form ⩾ 3, let us express H as a vertex disjoint union of two 3-graphs:

H = H ′
∪ H ′′, |V (H ′)| = m, |V (H ′′)| = n − m.

Then, clearly, both H ′ and H ′′ are P-free, and thus

|H| ⩽ ex(1)(m; P) + ex(1)(n − m; P). (4)

Form = 3, since H ̸⊆ Co(n), we have H ′′
̸⊆ Sn−3 and consequently

|H| ⩽ 1 + ex(2)(n − 3; P) < |Hn|,

where the last inequality is easily verified by hand.
Form = 4 and n ∈ {13, 14} by (4),

|H| ⩽ 4 + ex(1)(n − 4; P) = 4 +

(
n − 5
2

)
< 20 +

(
n − 7
2

)
= |Hn|;

and for n ⩾ 15, either H ′′
⊆ Sn−4 and so H ⊆ K4 ∪ Sn−4 = Hn (in which case we are done) or H ′′

̸⊆ Sn−4 but then,

|H| ⩽ 4 + ex(2)(n − 4; P) < 4 +

(
n − 5
2

)
= |Hn|.

Form = 5 by (4),

|H| ⩽ ex(1)(5; P) + ex(1)(n − 5; P) = 10 +

(
n − 6
2

)
< |Hn|.

For m = 6 and n = 13, since H ̸⊆ K6 ∪ K6 ∪ K1 we have H ′′
̸⊂ K6 ∪ K1 and so, |H ′′

| ⩽ ex(2)(7; P) = |S7| whereas for
n ⩾ 14, we bound |H ′′

| ⩽ ex(1)(n − 6; P) = |Sn−6|. Hence, in both cases we have

|H| ⩽ ex(1)(6; P) + |Sn−6| = 20 +

(
n − 7
2

)
⩽ |Hn|.

However, for n ∈ {13, 14}, the first inequality must be strict (since H ̸= Hn), while for n ⩾ 15 the second inequality is strict.
Form = 7we have n ⩾ 14 and, by (4), for n = 14

|H| ⩽ ex(1)(7; P) + ex(1)(7; P) = 20 + 20 < 41 = |H14|,

whereas, for n ⩾ 15

|H| ⩽ ex(1)(7; P) + ex(1)(n − 7; P) = 20 +

(
n − 8
2

)
< 4 +

(
n − 5
2

)
= |Hn|.

Finally, form ⩾ 8 we have n ⩾ 16 and, by (4),

|H| ⩽ ex(1)(m; P) + ex(1)(n − m; P) =

(
m − 1

2

)
+

(
n − m − 1

2

)
⩽

(
7
2

)
+

(
n − 9
2

)
<

(
3
2

)
+

(
n − 5
2

)
< 4 +

(
n − 5
2

)
= |Hn|.

4.3. Preparations for the proof of Lemma 5

Under the assumptions on H in Lemma 5, let Q be a copy of P2 in H such that there is at least one edge disjoint from
U = V (Q ). We know that Q exists, because P2 ∪ K3 ⊂ H . Let V = V (H) andW = V \U . Further, letW0 be the set of vertices
of degree zero in H[W ] andW1 = W \ W0 (see Fig. 2). Note that, by definition, H[W ] = H[W1] and |W1| ⩾ 3.
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Fig. 2. Set-up for the proof of Lemma 5.

Fig. 3. Three types of edges in H0 ∪ H1 .

We also split the set of edges of H . First, notice that, since H is P-free, there is no edge with one vertex in each U ,W0, and
W1. Let for i = 0, 1, Hi be the sub-3-graph of H composed of the edges intersecting both U and Wi. Then, clearly,

H = H[U] ∪ H[W ] ∪ H0 ∪ H1, (5)

with all four parts edge-disjoint.
Let x be the vertex of degree two in Q . If for some h ∈ H0 ∪ H1 we have |h ∩ U| = 1, then h ∩ U = {x}, since otherwise h

together with Q would form a copy of P in H . We let

F 0
= {h ∈ H0 ∪ H1 : h ∩ U = {x}}.

Also, the edges h ∈ H0 ∪H1 with |h∩U| = 2must be such that the pair h∩U is contained in an edge of Q , since otherwise
h together with Q would form a copy of C in H . For k = 1, 2, define

F k
= {h ∈ H0 ∪ H1 : |h ∩ U \ {x}| = k}.

We have H0 ∪ H1 = F 0
∪ F 1

∪ F 2 (see Fig. 3). Further, for i = 0, 1 and k = 0, 1, 2, we set

F k
i = F k

∩ Hi.

Note that, since H is P-free, F 1
1 = ∅ and thus,

H1 = F 0
1 ∪ F 2

1 . (6)

Observe also that, because H is connected, H1 ̸= ∅. Consequently, since the presence of any edge of H1 forbids at least 4
edges of H[U],

|H[U]| ⩽ 6. (7)

In [11, Fact 3] the authors have proven the following bound on the number of edges in H1:

|H1| ⩽ 2|W1| − 3. (8)

We use (8) to estimate |H[W ]| + |H1|.
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Fact 1. Set |W1| = z. We have

|H[W ]| + |H1| ⩽

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
z
3

)
+ 2z − 3 for 3 ⩽ z ⩽ 5,(

z − 1
2

)
+ 2z − 3 for 6 ⩽ z ⩽ 7,

28 for z = 8,
(z − 1)2

2
+ 2 for z ⩾ 9.

(9)

Proof. For 3 ⩽ z ⩽ 5, the above inequality is an immediate consequence of (8), whereas for 6 ⩽ z ⩽ 7, we use (8) and the
bound |H[W ]| ⩽

(z−1
2

)
, stemming from Theorem 5.

For z ⩾ 8 we have to consider two cases. Suppose first that H[W ] ⊆ Sz with the center v ∈ W1. Since H is P-free, every
edge h ∈ F 2

1 must have h ∩ W1 = {v}. Hence, |F 2
1 | ⩽ 2. Moreover, if e ∈ F 0

1 , then the pair e ∩ W1 must be nonseparable in
H[W1], that is, every edge of H[W1] must contain both these vertices or none. Since, as it can be easily proved, there are at
most

⌊ z−1
2

⌋
nonseparable pairs inW1,

|F 0
1 | ⩽

⌊
z − 1
2

⌋
.

Consequently, by (6),

|H1| ⩽ 2 +

⌊
z − 1
2

⌋
and, again using Theorem 5,

|H[W ]| + |H1| ⩽

(
z − 1
2

)
+ 2 +

⌊
z − 1
2

⌋
⩽

(z − 1)2

2
+ 2. (10)

Otherwise, that is, when H[W ] ̸⊆ Sz , we consider two further subcases. If H[W ] ̸⊇ M , then, by Theorem 3 combined with
the fact that C ⊂ Gi(n), i = 1, 2, and the assumption that C ̸⊆ H ,

|H[W ]| ⩽ 3z − 9. (11)

If, on the other hand, H[W ] ⊇ M , then, by Lemma 2,

|H[W ]| ⩽ ex(n; {P, C}|M) =

⎧⎪⎨⎪⎩
2z − 4 for 8 ⩽ z ⩽ 9,
20 for z = 10,

4 +

(
z − 4
2

)
for z ⩾ 11.

(12)

Taking the larger of the bounds (11) and (12), and using (8), we arrive at the ultimate bound

|H[W ]| + |H1| ⩽

⎧⎨⎩
5z − 12 for 8 ⩽ z ⩽ 10,(
z − 4
2

)
+ 2z + 1 for z ⩾ 11. (13)

It is easy to check that for z ⩾ 8, the maximum of the R-H-S of (10) and the R-H-S (13) is equal to the R-H-S of (9). □

4.4. Proof of Lemma 5

We adopt notation from the previous subsection. In particular, recall that z = |W1|. Additionally, we set s = |W0|. Our
plan is to first give the proof in three ‘smallest’ cases: s = 0, z = 3, and n ∈ {13, 14, 15}.
s = 0 (W0 = ∅). Then H0 = ∅ and z = n − 5 ⩾ 8. By (5), (7), and (9),

|H| = |H[U]| + |H[W ]| + |H1| ⩽

⎧⎨⎩34 for z = 8,

6 +
(z − 1)2

2
+ 2 for z ⩾ 9.

This implies that for n = 13, |H| < 35, for n = 14, |H| ⩽ 40 < 41, while for n ⩾ 15, it can be easily checked that

|H| ⩽ 6 +
(z − 1)2

2
+ 2 < 4 +

(
z
2

)
= |Hn|.

Therefore, from now on we will be assuming that W0 ̸= ∅, or s ⩾ 1. The proofs of the other two special cases, z = 3
and n ∈ {13, 14, 15}, are both split into two subcases with respect to F 2

1 . We begin with bounding the number of edges in
H[U ∪ W0] when F 2

1 ̸= ∅.
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Fact 2. If F 2
1 ̸= ∅, then

|H[U ∪ W0]| ⩽

⎧⎪⎨⎪⎩
8 for s = 1,
3s + 7 for 2 ⩽ s ⩽ 4,(
s + 2
2

)
+ 1 for s ⩾ 5.

(14)

Proof. Let u and v be some two vertices of U belonging to the same edge of F 2
1 . If H[U ∪ W0] ⊆ Ss+5 (with the center in x),

then, since H is P-free, the only edge of H[U ∪ W0] containing u or v is {x, u, v}. Hence

|H[U ∪ W0]| ⩽

(
s + 2
2

)
+ 1. (15)

Otherwise, either H[U ∪ W0] ̸⊇ M and, assuming that s ⩾ 2, and thus |U ∪ W0| ⩾ 7, by Theorem 3,

|H[U ∪ W0]| ⩽ ex(2)(s + 5;M) = 3(s + 5) − 8 = 3s + 7, (16)

or H[U ∪ W0] ⊇ M and, by Lemma 2, this time including s = 1,

|H[U ∪ W0]| ⩽ ex(s + 5; {P, C}|M) =

⎧⎪⎨⎪⎩
2s + 6 for 1 ⩽ s ⩽ 4,
20 for s = 5,

4 +

(
s + 1
2

)
for s ⩾ 6.

(17)

For s = 1 we argue as follows. Since H is P-free, every edge of H[U ∪ W0] must contain either both of u and v or none.
There are only 8 such edges and so, |H[U ∪ W0]| ⩽ 8. In summary, (14) follows by (15), (16), (17), and the above bound for
s = 1. □

z = 3, F21 ̸= ∅. We combine bounds (9) of Fact 1 and (14) to estimate |H|. Since s = n − 5 − z ⩾ 13 − 8 = 5,

|H| = |H[U ∪ W0]| + |H1| + |H[W ]| ⩽

(
s + 2
2

)
+ 1 +

(
3
3

)
+ 2 · 3 − 3

=

(
n − 6
2

)
+ 5 < |Hn|.

z = 3, F21 = ∅. Then, by (6), |H1| ⩽ |F 0
1 | ⩽ 3. Since H ̸⊆ Co(n) we have H[U ∪ W0] ̸⊆ Ss+5 and consequently, by Theorem 7,

H[U ∪ W0] ⩽ ex(2)(s + 5; P) =

⎧⎪⎪⎨⎪⎪⎩
20 +

(
s − 1
3

)
for 10 ⩽ s + 5 ⩽ 12,

4 +

(
s + 1
2

)
for s + 5 ⩾ 13.

Hence, for 13 ⩽ n ⩽ 15 (10 ⩽ s + 5 ⩽ 12)

|H| = |H[U ∪ W0]| + |H1| + |H[W ]| ⩽ 20 +

(
s − 1
3

)
+ 3 + 1 = 24 +

(
n − 9
3

)
< |Hn|,

while for n ⩾ 16 (s + 5 ⩾ 13)

|H| = |H[U ∪ W0]| + |H1| + |H[W ]| ⩽ 4 +

(
s + 1
2

)
+ 3 + 1

= 8 +

(
n − 7
2

)
< 4 +

(
n − 5
2

)
= |Hn|.

Consequently for the rest of the proof we will be assuming that z ⩾ 4 (and s ⩾ 1).
n ∈ {13, 14, 15}, F21 ̸= ∅. We again combine bounds (9) of Fact 1 and (14) to estimate |H|. For n = 13 = 5 + s + z, where
4 ⩽ z ⩽ 7, the worst case is when z = 7 and s = 1, in which we get

|H| ⩽ 34 < 35.

For n = 14 = 5 + s + z, where 4 ⩽ z ⩽ 8, the worst case is when z = 7 and s = 2, and so

|H| ⩽ 39 < 41.

For n = 15 = 5 + s + z, where 4 ⩽ z ⩽ 9,

|H| ⩽ 42 < 49.
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n ∈ {13, 14, 15}, F21 = ∅. Since H is C-free, by Theorem 5,

|H[U ∪ W0]| ⩽

(
s + 4
2

)
. (18)

For z = 4, by an easy inspection, one can show that |H1| + |H[W ]| ⩽ 1 + 2 = 3. Therefore, by (18), for n = 13,
|H| ⩽ 28 + 3 < 35, for n = 14, |H| ⩽ 36 + 3 < 41, and for n = 15, |H| ⩽ 45 + 3 < 49.

For z ⩾ 5, we may apply Theorem 5 also to H[W1 ∪ {x}], obtaining the bound

|H1| + |H[W ]| = |H[W1 ∪ {x}]| ⩽
(
z
2

)
.

In summary, by (18),

|H| = |H[U ∪ W0]| + |H1| + |H[W ]| ⩽

(
s + 4
2

)
+

(
z
2

)
.

Consequently, by choosing optimal pairs (z, s), for n = 13 = 5 + s + z, where 5 ⩽ z ⩽ 7, we get

|H| ⩽ 31 < 35,

for n = 14 = 5 + s + z, where 5 ⩽ z ⩽ 8, we get

|H| ⩽ 38 < 41,

whereas for n = 15 = 5 + s + z, where 5 ⩽ z ⩽ 9,

|H| ⩽ 46 < 49.

Thus, we are done with the proof of Lemma 5 in all three cases: s = 0, z = 3, and n ∈ {13, 14, 15}. In fact, recalling our
argument from Section 4.2, we have actually proved Theorem 9 for all n ⩽ 15. To complete the proof of Lemma 5 for the
remaining values of n, we need only to prove Fact 3 below. The proof is by induction on n, and we include the case n = 15
there to serve as the inductive base.

Note that compared to Lemma 5, we now relax the assumption of connectivity, replacing it with that of H1 ̸= ∅. Also,
although we have already proved Lemma 5 for s = 0, or W0 = ∅, we do not impose the opposite assumption here. Both
these relaxations are made to accommodate the inductive proof below. Finally, note that we may drop the assumption that
H ̸⊆ Co(n), as it follows from the fact that |W1| ⩾ 4 (a comet cannot contain two edges not containing the center). For a
3-graph G and a vertex v ∈ V (G), let G(v) denote the link graph of v in G, that is, the set of pairs of vertices which together
with v form an edge of G.

Fact 3. For n ⩾ 15, if H is an n-vertex, {P, C}-free 3-graph such that H ⊃ P2 ∪ K3 and, under the notation of Section 4.3,
z = |W1| ⩾ 4 and H1 ̸= ∅, then

|H| < 4 +

(
n − 5
2

)
= |Hn|.

Proof. The proof is by induction on nwith the initial step n = 15 done earlier. Let n ⩾ 16. It can be easily checked that, since
H is P-free, for every v ∈ W either

F 0(v) = ∅ or F 2(v) = ∅. (19)

Moreover, by the definitions of F 1 and F 2,

|F 1(v)| ⩽ 4 and |F 2(v)| ⩽ 2. (20)

If W0 = ∅, then we are done by an earlier proof (at the beginning of this subsection). Otherwise, fix v ∈ W0 and observe
that, by the remark preceding (5), |F 0(v)| ⩽ |W0| − 1. Thus, by (19) and (20), since |W0| = n − 5 − |W1| ⩽ n − 9,

|H(v)| = |F 0(v)| + |F 1(v)| + |F 2(v)| ⩽ 4 + max{2, |W0| − 1} ⩽ 4 + n − 10 = n − 6. (21)

Notice that H − v satisfies the assumptions of Fact 3. Indeed, as the removal of v affects H0 only, in the obtained sub-3-
graph we still have both, H1 ̸= ∅ and |W1| ⩾ 4. Consequently, by the induction’s assumption and (21)

|H| = |H − v| + |H(v)| < 4 +

(
n − 6
2

)
+ n − 6 = 4 +

(
n − 5
2

)
= |Hn|. □
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