UNIVERSALITY OF RANDOM GRAPHS*

DOMINGOS DELLAMONICA, JR. ${ }^{\dagger}$, YOSHIHARU KOHAYAKAWA ${ }^{\ddagger}$, VOJTĚCH RÖDL ${ }^{\dagger}$, AND ANDRZEJ RUCIŃSKI§

Abstract

We prove that asymptotically (as $n \rightarrow \infty$) almost all graphs with n vertices and $C_{d} n^{2-\frac{1}{2 d}} \log \frac{1}{d} n$ edges are universal with respect to the family of all graphs with maximum degree bounded by d. Moreover, we provide an efficient deterministic embedding algorithm for finding copies of bounded degree graphs in graphs satisfying certain pseudorandom properties. We also prove a counterpart result for random bipartite graphs, where the threshold number of edges is even smaller but the embedding is randomized.

Key words. random graphs, universality, bounded degree graphs, graph embedding
AMS subject classifications. 05C80, 05C60
DOI. 10.1137/10079882X

1. Introduction. Given graphs H and G, an embedding of H into G is an injective edge-preserving map $f: V(H) \rightarrow V(G)$, that is, for every $e=\{u, v\} \in E(H)$, we have $f(e)=\{f(u), f(v)\} \in E(G)$. We shall say that a graph H is contained in G as a subgraph if there is an embedding of H into G. Given a family of graphs \mathcal{H}, we say that G is universal with respect to \mathcal{H}, or \mathcal{H}-universal, if every $H \in \mathcal{H}$ is contained in G as a subgraph.

Consider the probability space of all graphs on n labeled vertices in which every pair of vertices forms an edge, randomly and independently, with probability p. We use the notation $G_{n, p}$ to denote a graph chosen randomly according to this probability measure; i.e., for any graph G on n labeled vertices and with m edges, $\mathbb{P}\left[G_{n, p}=G\right]=$ $p^{m}(1-p)^{\binom{n}{2}-m}$. We say that $G_{n, p}$ possesses a property Q asymptotically almost surely (a.a.s.) if $\mathbb{P}\left[G_{n, p} \in Q\right]=1-o(1)$.

The construction of sparse universal graphs for various families of graphs has received a considerable amount of attention; see, e.g., $[1,2,3,6,8,10,13,18]$ and their references. One is particularly interested in (almost) tight \mathcal{H}-universal graphs, i.e., graphs whose number of vertices is equal (or close) to $\max _{H \in \mathcal{H}}|V(H)|$.

In [6] it is proved that for all $\varepsilon>0$ and $d>0$ there exists $c>0$ such that a.a.s. $G_{n, p}, p=c / n$, is $\mathcal{T}=\mathcal{T}(d,(1-\varepsilon) n)$-universal, where \mathcal{T} is the family of trees with $(1-\varepsilon) n$ vertices and maximum degree at most d. (See [7] for a recent improvement of this result.) In a related paper [11], the authors obtained an algorithm for finding

[^0]bounded degree trees in subgraphs of (n, d, λ)-graphs; in particular, the result of $[6]$ is turned into an embedding algorithm. In this paper we study the universality of random graphs with respect to the family of all bounded degree graphs.

Let $d \in \mathbb{N}$ be a fixed constant, let $\mathcal{H}(n, d)=\left\{H \subset K_{n}: \Delta(H) \leq d\right\}$ denote the class of (pairwise nonisomorphic) n-vertex graphs with maximum degree bounded by d, and let $\mathcal{H}(n, n ; d)=\left\{H \subset K_{n, n}: \Delta(H) \leq d\right\}$ be the corresponding class for balanced bipartite graphs.

By counting all unlabeled d-regular graphs on n vertices one can easily show that every $\mathcal{H}(n, d)$-universal graph must have

$$
\begin{equation*}
M=\Omega\left(n^{2-2 / d}\right) \tag{1}
\end{equation*}
$$

edges (see [1] for details). This lower bound was almost matched by a construction from [2], which was subsequently improved in [3] and [4]. Those constructions were quite special and do not resemble a typical, or random, graph with the same number of edges. For that reason, in [1], the universality of random graphs was also studied.

For random graphs, slightly better lower bounds than (1) are known. Owing ${ }^{1}$ to the threshold for the property that every vertex should belong to a copy of K_{d+1} (see [15, Theorem $3.22(\mathrm{i})]$), the expected number of edges guaranteeing $\mathcal{H}(n, d)$ universality of $G_{n, p}$ must be at least $n^{2-2 /(d+1)}(\log n)^{1 /\binom{d+1}{2}}$, and similarly, by [15, Theorem 4.9], it must be at least $n^{2-2 /(d+1)}$ for $\mathcal{H}(n, d)$-universality of $G_{(1+\varepsilon) n, p}$. Similar bounds apply to the random bipartite graph $G_{n, n, p}$.

In [1], it was proved that $G_{n, n, p}$ is a.a.s. $\mathcal{H}(n, n, d)$-universal if $p=c n^{-\frac{1}{2 d}} \log ^{\frac{1}{2 d}} n$ and c is large enough and that $G_{(1+\varepsilon) n, p}$ is a.a.s. $\mathcal{H}(n, d)$-universal if $p=c n^{-\frac{1}{d}} \log ^{\frac{1}{d}} n$ if c is large enough.

In this paper we prove two related results. The first one significantly pushes down the edge density p guaranteeing the universality of $G_{n, n, p}$.

THEOREM 1. For every $d \in \mathbb{N}$ there exists C such that if $p=p(n) \geq C n^{-1 / d} \log ^{1 / d}$ n, then the random bipartite graph $G_{n, n, p}$ is a.a.s. $\mathcal{H}(n, n, d)$-universal.

The second result, at the cost of increase in p, establishes a tight universality of $G_{n, p}$ (and not of $G_{(1+\varepsilon) n, p}$) and provides, as opposed to Theorem 1, a deterministic embedding.

THEOREM 2. For every $d \in \mathbb{N}$ there exists C such that if $p=p(n) \geq C n^{-1 /(2 d)}$ $\log ^{1 / d} n$, then the random graph $G=G_{n, p}$ is a.a.s. $\mathcal{H}(n, d)$-universal. Moreover, for any $H \in \mathcal{H}(n, d)$, the embedding $H \hookrightarrow G$ can be constructed in deterministic polynomial time.

Remark 3. Using the asymptotic equivalence between the two standard models of random graphs [15, Corollary 1.16] one can deduce from Theorem 2 that almost all graphs on n vertices with at least $C_{d} n^{2-1 /(2 d)} \log ^{1 / d} n$ edges are $\mathcal{H}(n, d)$-universal.

It would be interesting to establish the actual thresholds for the $\mathcal{H}(n, n ; d)$ universality of $G_{n, n, p}$ and the $\mathcal{H}(n, d)$-universality of $G_{n, p}$.

In this paper we restrict our attention to $d \geq 2$ since the case $d=1$ reduces to the threshold of containing a matching of maximum size (namely, a matching of size $\lfloor n / 2\rfloor$). It is well known [15, Chapter 4.1] that this threshold is $p \sim \log n / n$.

The proof of Theorem 1 is based on ideas from [20] and [19]. The embedding scheme used to prove Theorem 2 is inspired by the algorithmic version of the blowup lemma of Komlós, Sárközy, and Szemerédi [17]. In their setting, they essentially

[^1]provided an algorithm to embed bounded degree spanning (bipartite) graphs into super-regular, dense, bipartite graphs. In our setting, we deal with sparse random graphs.

In section 2 we establish several typical properties of random graphs which imply universality. The proofs of Theorems 1 and 2 are presented in sections 3 and 4, respectively.
2. Properties of random graphs. In this section we establish properties of random graphs which will then be shown to guarantee the universality property with respect to bounded degree subgraphs.

We begin with some definitions.
Definition 4. Given a graph G, a vertex $v \in V(G)$, and a subset $\emptyset \neq S \subset V(G)$, denote by $G(v)$ the neighborhood of v in G and by

$$
G^{\cap}(S)=\bigcap_{v \in S} G(v)
$$

the joint neighborhood of S in G. Moreover, we let $G^{\cap}(\emptyset)=V(G)$.
LEMMA 5. For all $d \in \mathbb{N}, d \geq 2$, and $\gamma, \nu>0$, if $p \geq C n^{-1 / d} \log ^{1 / d} n$, where $C^{d} \geq \frac{d+2}{\gamma \nu}$, then the random bipartite graph $G=G_{n, n ; p}$ with classes U and W together with a fixed subset $W^{\prime} \subseteq W$, where $\left|W^{\prime}\right| \geq \gamma n$ a.a.s. satisfies the following properties:
(i) For every $A \subset U$ (or $A \subset W$) with $|A| \leq d$

$$
(1-\nu) p^{|A|} n \leq\left|G^{\cap}(A)\right| \leq(1+\nu) p^{|A|} n
$$

(ii) For every $U^{\prime} \subset U$ with $\left|U^{\prime}\right| \geq n / 2$ there are at most $\frac{20}{p}$ vertices $w \in W$ such that $\left|G(w) \cap U^{\prime}\right|<\frac{p}{2}\left|U^{\prime}\right|$.
(iii) For every disjoint family $\mathcal{F} \subset\binom{U}{d}$ and a subset $T \subset W^{\prime}$, with $|\mathcal{F}| \leq(1-$ $\nu)\left|W^{\prime}\right|$, and $|T|=\left|W^{\prime}\right|-|\mathcal{F}| \geq \nu\left|W^{\prime}\right|$, there exists a vertex $w \in T$ and a set $A \in \mathcal{F}$ such that $A \subset G(w)$.
Proof. The first two properties are obtained by standard applications of the Chernoff inequality. Indeed, in (i), $Z_{A}:=\left|G^{\cap}(A)\right|$ has a binomial distribution with expectation $\mathbb{E} Z_{A}=n p^{|A|} \geq C^{d} \log n$, and so

$$
\sum_{a=1}^{d}\binom{n}{a} \times \mathbb{P}\left(\left|Z_{A}-\mathbb{E} Z_{A}\right| \geq \nu \mathbb{E} Z_{A}\right)=o(1)
$$

for sufficiently large C. To prove (ii) suppose that for some U^{\prime} there is a subset $S \subset W$ of $20 / p$ vertices $w \in W$ with $\left|G(w) \cap U^{\prime}\right|<\frac{p}{2}\left|U^{\prime}\right|$. Then there are fewer than $10\left|U^{\prime}\right|$ edges between S and U^{\prime}, while the expected number of such edges is $20\left|U^{\prime}\right|$. Thus,

$$
\mathbb{P}\left(\left|G(w) \cap U^{\prime}\right|<\frac{p}{2}\left|U^{\prime}\right|\right) \leq \exp \left\{-\frac{1}{8} 20\left|U^{\prime}\right|\right\} \leq \exp \left\{-\frac{5}{4} n\right\}
$$

There are no more than 2^{n} choices of U^{\prime} and $n^{20 / p}$ choices of S and so the probability of the event opposite to that stated in part (ii) is $o(1)$. We will now prove property (iii).

Let $s, t \geq 1$ be such that $t \geq \nu\left|W^{\prime}\right|$ and $s+t=\left|W^{\prime}\right|$. For some fixed disjoint family $\mathcal{F} \subset\binom{U}{d}$ and $T \subset W^{\prime}$ with $|\mathcal{F}|=s$ and $|T|=t$, the probability that there are no pairs $(w, A) \in T \times \mathcal{F}$ such that $A \subset G(w)$ is

$$
\left(1-p^{d}\right)^{s t} \leq \exp \left\{-p^{d} s t\right\}
$$

The probability that there is a disjoint family $\mathcal{F} \subset\binom{U}{d}$ and $T \subset W^{\prime}$ failing (iii) is at most

$$
\begin{align*}
{[*] } & :=\sum_{t=\nu\left|W^{\prime}\right|}^{\left|W^{\prime}\right|-1}\binom{\left|W^{\prime}\right|}{t}\binom{|U|}{d}^{\left|W^{\prime}\right|-t} \exp \left\{-p^{d} t\left(\left|W^{\prime}\right|-t\right)\right\} \\
& \leq \sum_{t} \exp \left\{\left(\left|W^{\prime}\right|-t\right) \log n+\left(\left|W^{\prime}\right|-t\right) d \log n-p^{d} t\left(\left|W^{\prime}\right|-t\right)\right\} \tag{2}\\
& \leq \sum_{t} \exp \left\{\left(\left|W^{\prime}\right|-t\right)\left[(d+1) \log n-p^{d} t\right]\right\} .
\end{align*}
$$

Observe that

$$
p^{d} t \geq p^{d} \nu\left|W^{\prime}\right| \geq C^{d} \nu \gamma \log n \geq(d+2) \log n
$$

and consequently $[*] \leq \sum_{j=1}^{\nu\left|W^{\prime}\right|} n^{-j}=O\left(n^{-1}\right)=o(1)$.
Lemma 6. For all $d \in \mathbb{N}, d \geq 2$, and $\varepsilon>0$ there exists $C>0$ such that if $p \geq$ $C n^{-1 /(2 d)} \log ^{1 / d} n$, then the random graph $G=G_{n, p}$ a.a.s. satisfies the following properties:
(i) $\delta(G) \geq(1-\varepsilon) p n$.
(ii) For every pair of sets $A, B \subset V(G)$ with $p|A||B| \geq 100 \varepsilon^{-3} n$ there are at least $(1-\varepsilon)|B|$ vertices $v \in B$ such that

$$
(1-\varepsilon) p|A| \leq|G(v) \cap A| \leq(1+\varepsilon) p|A|
$$

(iii) For every $k \leq d, T \subset V(G)$ with $|T| \geq \sqrt{n}$ and every disjoint family $\mathcal{X} \subset$ $\binom{V(G) \backslash T}{k}$ with $|\mathcal{X}| \geq \sqrt{n}$, we have
(3) $\quad(1-\varepsilon) p^{k}|T||\mathcal{X}| \leq|\{(w, X) \in T \times \mathcal{X}: X \subset G(w)\}| \leq(1+\varepsilon) p^{k}|T||\mathcal{X}|$.

Proof. The first two properties are obtained by standard applications of the Chernoff inequality. We will now prove property (iii).

Let $k \leq d$ be fixed. For a choice of set T and family \mathcal{X}, the number of pairs (w, X) being counted is a binomial variable with mean $p^{k}|T||\mathcal{X}|$. By the Chernoff inequality, the probability this variable deviates by more than $\varepsilon p^{k}|T||\mathcal{X}|$ from the mean is at most

$$
\exp \left\{-c p^{k}|T||\mathcal{X}|\right\} \leq \exp \left\{-c p^{d}|T||\mathcal{X}|\right\}
$$

for a constant $c=c(\varepsilon)$.
On the other hand, the number of possible choices for T and the family \mathcal{X} with predetermined cardinalities $t=|T|$ and $r=|\mathcal{X}|(t, r \geq \sqrt{n})$ is at most $\left(n^{d}\right)^{r} n^{t} \leq$ $\exp \{d(r+t) \log n\}$.

Since $p^{d} t r \geq \max \left\{C^{d} r \log n, C^{d} t \log n\right\}$, a large enough $C=C(d, \varepsilon)$ implies that

$$
\begin{equation*}
c p^{d} t r \geq 2 d(r+t) \log n \tag{4}
\end{equation*}
$$

Therefore, we have

$$
\begin{align*}
& \sum_{k=1}^{d} \sum_{T:|T| \geq \sqrt{n} \mathcal{X}:|\mathcal{X}| \geq \sqrt{n}} \mathbb{P}[(3) \text { fails for } T, \mathcal{X}] \\
& \leq \sum_{k=1}^{d} \sum_{t \geq \sqrt{n}} \sum_{r \geq \sqrt{n}} \exp \left\{d(r+t) \log n-c p^{k} t r\right\} \tag{5}\\
& \quad \text { (4) } \leq d n^{2} \exp \{-2 d \sqrt{n} \log n\}=o(1)
\end{align*}
$$

Property (iii) then follows by the union bound.
3. Universality of bipartite graphs. In this section we prove a slight strengthening of Theorem 1. Given $d, d^{\prime} \in \mathbb{N}$, and a bipartite complete graph $K_{n, n}$ with vertex classes X and $Y,|X|=|Y|=n$, let

$$
\begin{aligned}
\mathcal{H}\left(n, n, d^{\prime}, d\right)=\left\{H \subset K_{n, n}:\right. & \operatorname{deg}_{H}(x) \leq d^{\prime} \text { for } x \in X \text { and } \\
& \left.\operatorname{deg}_{H}(y) \leq d \text { for } y \in Y\right\} .
\end{aligned}
$$

THEOREM 7. For all $d, d^{\prime} \in \mathbb{N}, 2 \leq d \leq d^{\prime}$, there exists C such that if $p=$ $p(n) \geq C n^{-1 / d} \log ^{1 / d} n$, then the random bipartite graph $G_{n, n ; p}$ is a.a.s. $\mathcal{H}\left(n, n, d^{\prime}, d\right)-$ universal.

Let $\mathcal{H}\left(n, n, d^{\prime},=d\right)$ be defined as $\mathcal{H}\left(n, n, d^{\prime}, d\right)$ but with the additional condition that all vertices $y \in Y$ have degree exactly d. Note that if n is sufficiently larger than d^{\prime}, then for every $H^{\prime} \in \mathcal{H}\left(n, n, d^{\prime}, d\right)$ there is an $H \in \mathcal{H}\left(n, n, d^{\prime}+1,=d\right)$ such that $H^{\prime} \subseteq H$. Thus, it suffices to show that $G_{n, n ; p}$ is a.a.s. $\mathcal{H}\left(n, n, d^{\prime}+1,=d\right)$-universal.

Let the two vertex classes of $G_{n, n ; p}$ be U and $W,|U|=|W|=n$. For technical reasons we will need a partition of W. A partition in which the cardinalities of any two parts differ by at most 1 is called an equipartition. Let $W=W_{1} \cup W_{2} \cup \cdots \cup W_{D}$ be a fixed equipartition of W with

$$
D:=d d^{\prime}+1
$$

Notice that for every $i=1, \ldots, D$, we have

$$
\left|W_{i}\right| \geq\left\lfloor\frac{n}{D}\right\rfloor>\frac{n}{D}-1 \geq \frac{n}{D+1}
$$

where the last inequality holds for $n \geq D(D+1)$.
Let

$$
\begin{equation*}
\nu=\frac{1}{8}(48 e)^{-d}, \quad \gamma=\frac{1}{D+1} \tag{6}
\end{equation*}
$$

and let $C>0$ be such that

$$
C^{d} \geq \frac{d+2}{\gamma \nu}
$$

In particular, for our choice of $p=C n^{-1 / d} \log ^{1 / d} n$, Lemma 5 applies to $G_{n, n ; p}$. Further, let G be a bipartite graph that for each $i=1, \ldots, D$ satisfies properties (i)(iii) from Lemma 5 with $W^{\prime}=W_{i}$. We will show that G contains all $H \in \mathcal{H}\left(n, n, d^{\prime}+\right.$ $1,=d)$ as subgraphs, and consequently that G is $\mathcal{H}\left(n, n, d^{\prime}, d\right)$-universal. Theorem 7 will follow, since $G_{n, n ; p}$ a.a.s. satisfies properties (i)-(iii) from Lemma 5.

Let us fix $H \in \mathcal{H}\left(n, n, d^{\prime}+1,=d\right)$. In order to avoid certain dependency issues later in the proof, it would be convenient to assume that the d-element sets $H(y)$, $y \in Y$, are pairwise disjoint. This is not true in general, but it is possible to partition the set Y into finitely many subsets, each satisfying the above demand. A family of pairwise disjoint sets will be called a disjoint family.

Consider the auxiliary graph

$$
J=\left(Y,\left\{u v: u, v \in Y, \operatorname{dist}_{H}(u, v)=2\right\}\right)
$$

and note that $\Delta(J) \leq d d^{\prime}$. Similarly as in [14] we apply the Hajnal-Szemerédi Theorem [14] to J, thus obtaining an equipartition of $V(J)$ with D parts:

$$
Y=Y_{1} \cup \cdots \cup Y_{D}
$$

Fig. 1. The idea of the proof of Theorem 7.
where each Y_{i} is independent in J. Observe that by construction, for every $i=$ $1, \ldots, D,\left\{H(y): y \in Y_{i}\right\}$ is a disjoint family of d-element sets. We renumber the sets W_{i} so that $\left|Y_{i}\right|=\left|W_{i}\right|$ for all $i=1, \ldots, D$.

To show that $G \supseteq H$, our strategy is to find a bijection $\pi: X \rightarrow U$ which can be extended to an embedding f of H into G by selecting the images of vertices in Y. More precisely, given π, we will find a map $f: X \cup Y \rightarrow U \cup W$ such that

- $\left.f\right|_{X}=\pi$,
- $f\left(Y_{i}\right)=W_{i}$ for all $i=1, \ldots, D$, and, most importantly,
- for all $y \in Y$

$$
\pi(H(y)) \subseteq G(f(y))
$$

Let $\pi: X \rightarrow U$ be a random bijection and let A_{i}^{π} be the auxiliary bipartite graph with classes Y_{i} and W_{i} containing as edges all pairs $(y, w) \in Y_{i} \times W_{i}$ for which the π-image of the H-neighborhood of y is contained in the G-neighborhood of w (see Figure 1). Namely,

$$
\begin{equation*}
E\left(A_{i}^{\pi}\right)=\left\{(y, w) \in Y_{i} \times W_{i}: \pi(H(y)) \subseteq G(w)\right\} \tag{7}
\end{equation*}
$$

Suppose that each $A_{i}^{\pi}, i=1, \ldots, D$, contains a perfect matching M_{i} and set $M=$ $\bigcup_{i=1}^{D} M_{i}$. Extend π to an embedding of H into G by letting, for every $y \in Y, f(y)=w$, where (y, w) is the edge of M incident to y. We claim that such an extension is an embedding of H into G.

The extension f is clearly a bijection. It remains to show that f is also edgepreserving. For an edge $e=(x, y) \in E(H)$, let i_{e} be such that $y \in Y_{i_{e}}$. By construction, $(y, f(y)) \in A_{i_{e}}^{\pi}$, which implies that $\pi(H(y)) \subseteq G(f(y))$ and thus $\pi(x) \in G(f(y))$. Consequently, $(f(x), f(y))=(\pi(x), f(y)) \in E(G)$ and the map f is edge-preserving.

Therefore, in order to complete the proof of Theorem 7 it suffices to show the following probabilistic lemma. (Notice that the graph G in that lemma is fixed and the probability space in consideration refers to the random bijection π.)

Lemma 8. For every $i=1, \ldots, D$, if G satisfies the properties listed in Lemma 5 with $W^{\prime}=W_{i}$, then the graph A_{i}^{π} a.a.s. contains a perfect matching.

Proof. Let us fix an index i throughout this proof and set

$$
m:=\left|Y_{i}\right|=\left|W_{i}\right| .
$$

Recall that

$$
\gamma n=\frac{n}{D+1} \leq m \leq \frac{n}{D-1}=\frac{n}{d d^{\prime}}
$$

for $n \geq D(D+1)$, where $D=d d^{\prime}+1$. We will verify Hall's condition in order to establish the result. To simplify notation, for every $V \subseteq V\left(A_{i}^{\pi}\right)=Y_{i} \cup W_{i}$ we set

$$
\begin{equation*}
N(V)=\bigcup_{v \in V} A_{i}^{\pi}(v) \tag{8}
\end{equation*}
$$

It is well known that it suffices to show for some integer $m^{\prime} \geq 0$ that

- $|N(S)| \geq|S|$ for all $S \subseteq Y_{i}$ with $|S| \leq m^{\prime}$ and
- $|N(T)| \geq|T|$ for all $T \subseteq W_{i}$ with $|T| \leq m-m^{\prime}$.

Set $m^{\prime}=(1-\nu) m$ and fix an arbitrary bijection $\pi: X \rightarrow U$. Observe that $\left\{\pi(H(y)): y \in Y_{i}\right\}$ is a disjoint family. For all $S \subset Y_{i}$ and $T \subset W_{i}$ such that $|S| \leq m^{\prime}$ and $|T|=m-|S|$, property (iii) from Lemma 5 yields that setting $\mathcal{F}_{S}=\{\pi(H(y))$: $y \in S\} \subset\binom{U}{d}$, there is $(w, A) \in T \times \mathcal{F}_{S}$ satisfying $A \subseteq G(w)$. In particular, it follows that for every π we have $|N(S)| \geq|S|$ for all sets $S \subset Y_{i}$ with $|S| \leq m^{\prime}$.

In remains to verify that Hall's condition holds a.a.s. for all sets $T \subseteq W_{i}$ with $|T| \leq$ $m-m^{\prime}=\nu m$. We will divide this range of $t:=|T|$ into two parts and prove the following two statements:
(I) a.a.s. every $T \subset W_{i}, \frac{100}{p} \leq t \leq \nu\left|W_{i}\right|$, satisfies $|N(T)| \geq t$;
(II) a.a.s. every $T \subset W_{i}, t \leq \frac{100}{p}$, satisfies $|N(T)| \geq t$.

Proof of (I). Let $Y_{i}=\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$. Consider a fixed set $T \subset W_{i}$ with $100 / p \leq t=|T| \leq \nu\left|W_{i}\right|$. We will be partially revealing π by exposing $\pi\left(H\left(y_{k}\right)\right)$ one step at a time for $k=1,2, \ldots, m$. For convenience, set $H_{k}:=H\left(y_{k}\right)$. Notice that if $\pi\left(H_{k}\right) \subseteq G(w)$ for some $w \in T$, then $\left(y_{k}, w\right) \in A_{i}^{\pi}$ and thus $y_{k} \in N(T)$.

Suppose that $\pi\left(H_{j}\right)$ has been exposed for all $j<k$. The set $\pi\left(H_{k}\right)$ is then a uniformly chosen d-subset of $U_{k}=U \backslash \bigcup_{j<k} \pi\left(H_{j}\right)$ (see Figure 2). We have

$$
\left|U_{k}\right| \geq n-m d \geq n-\frac{n}{d^{\prime}} \geq \frac{n}{2}
$$

Therefore, by property (ii) from Lemma 5,

$$
\begin{equation*}
\left|\left\{w \in T:\left|G(w) \cap U_{k}\right| \geq \frac{1}{2} p\left|U_{k}\right|>\frac{p n}{4}\right\}\right| \geq t-\frac{20}{p} \geq 0.8 t \tag{9}
\end{equation*}
$$

Let

$$
\mathcal{A}_{k}=\bigcup_{w \in T}\binom{G(w) \cap U_{k}}{d}
$$

Fig. 2. Illustration to the proof of Lemma 8, case (I).

Note that $y_{k} \in N(T)$ iff $\pi\left(H_{k}\right) \in \mathcal{A}_{k}$. We are going to subdivide the range of t even further and assume first that $t \leq \frac{1}{2(12 p)^{d}}$.

Claim 9. For all $k=1,2, \ldots, m$ and $t \leq \frac{1}{2(12 p)^{d}}$, we have

$$
\left|\mathcal{A}_{k}\right| \geq Q \stackrel{\text { def. }}{=} \frac{t}{2}\binom{p n / 4}{d} .
$$

Proof. By Bonferroni's inequality, we have

$$
\left|\mathcal{A}_{k}\right| \geq \sum_{w \in T}\binom{\left|G(w) \cap U_{k}\right|}{d}-\sum_{w \neq w^{\prime} \in T}\binom{\left|G(w) \cap G\left(w^{\prime}\right) \cap U_{k}\right|}{d}
$$

From (9) we conclude that

$$
\sum_{w \in T}\binom{\left|G(w) \cap U_{k}\right|}{d} \geq 0.8 t\binom{p n / 4}{d}
$$

On the other hand, using property (i) from Lemma 5 applied to sets with two elements, we have

$$
\left|G(w) \cap G\left(w^{\prime}\right)\right| \leq(1+\nu) p^{2} n \leq(3 / e) p^{2} n
$$

for every $w \neq w^{\prime}$. Therefore, using the standard estimates $(M / l)^{l} \leq\binom{ M}{l} \leq(e M / l)^{l}$,

$$
\begin{aligned}
\sum_{w \neq w^{\prime} \in T}\binom{\left|G(w) \cap G\left(w^{\prime}\right) \cap U_{k}\right|}{d} & \leq\binom{ t}{2}\binom{(3 / e) p^{2} n}{d} \\
& \leq \frac{1}{2} t^{2}\left(\frac{3 p^{2} n}{d}\right)^{d} \leq \frac{1}{2} t^{2}(12 p)^{d}\binom{p n / 4}{d}
\end{aligned}
$$

Under the assumption that $t \leq \frac{1}{2(12 p)^{d}}$, the above inequalities imply the claim.

For every $k=1,2, \ldots, m$, let $\mathcal{B}_{k} \subseteq \mathcal{A}_{k}$ be a fixed set with exactly Q elements (for concreteness, take the lexicographically first Q sets of \mathcal{A}_{k}). Further, define

$$
I_{k}=\mathbb{I}\left[\pi\left(H_{k}\right) \in \mathcal{A}_{k}\right] \text { and } J_{k}=\mathbb{I}\left[\pi\left(H_{k}\right) \in \mathcal{B}_{k}\right]
$$

Let

$$
Z_{T}=\sum_{k=1}^{m} I_{k} \text { and } Z_{T}^{\prime}=\sum_{k=1}^{m} J_{k}
$$

Observe that since $I_{k} \geq J_{k}$ for all k,

$$
Z_{T}=|N(T)| \geq Z_{T}^{\prime}
$$

It is easy to see that the variables J_{k} are independent and hence Z_{T}^{\prime} is a generalized binomial random variable with mean

$$
\mu_{T}^{\prime}=\mathbb{E}\left[Z_{T}^{\prime}\right]=\sum_{k=1}^{m} \frac{Q}{\binom{\left|U_{k}\right|}{d}}
$$

By Claim 9 we bound

$$
\begin{equation*}
\mu_{T}^{\prime} \geq m Q\binom{n}{d}^{-1} \geq \frac{p^{d} m t}{2(4 e)^{d}} \geq \frac{C^{d} \gamma t \log n}{2(4 e)^{d}} \geq 16 t \log n \tag{10}
\end{equation*}
$$

by our choice of C.
Applying Chernoff's bound [15, Theorem 2.8] to Z_{T}^{\prime} yields

$$
\mathbb{P}\left[Z_{T}^{\prime} \leq \mu_{T}^{\prime} / 2\right] \leq \exp \left\{-\mu_{T} / 8\right\} \leq n^{-2 t}
$$

Therefore, by the union bound

$$
\begin{align*}
\mathbb{P}\left[\text { there exists } T, \frac{100}{p}\right. & \left.\leq t \leq \frac{1}{2(12 p)^{d}}: Z_{T}^{\prime} \leq \frac{\mu_{T}^{\prime}}{2}\right] \\
& \leq \sum_{t=100 / p}^{1 /\left[2(12 p)^{d}\right]}\binom{m}{t} n^{-2 t} \leq \sum_{t=1}^{m} n^{-t}=o(1) \tag{11}
\end{align*}
$$

Hence, a.a.s. every T with $\frac{100}{p} \leq t \leq \frac{1}{2(12 p)^{d}}$ satisfies

$$
|N(T)| \geq Z_{t}^{\prime} \geq \frac{1}{2} \mu_{T}^{\prime} \geq 8 t \log n \geq t
$$

Consider now a set T with $\frac{1}{2(12 p)^{d}} \leq t \leq \nu m$. Let $T_{0} \subset T$ be an arbitrary set with cardinality $\frac{1}{2(12 p)^{d}}$. We have

$$
|N(T)| \geq\left|N\left(T_{0}\right)\right|=Z_{T_{0}} \geq Z_{T_{0}}^{\prime} \geq \frac{\mu_{T_{0}}^{\prime}}{2} \stackrel{(10)}{\geq} \frac{p^{d} m}{4(4 e)^{d}}\left|T_{0}\right|=\nu m
$$

It follows that a.a.s. every T with $\frac{100}{p} \leq t \leq \nu m$ satisfies $|N(T)| \geq t$ and thus (I) is proved.

Proof of (II). Since in this case the sets T are small (i.e., $t=|T|<100 / p$), we will change our strategy and consider the inverse of the random mapping π. Recall that $N(T)$ has been defined in (8) and γ was defined in (6). Our aim will be to prove that a.a.s.

$$
\begin{equation*}
|N(T)| \geq p^{d} \frac{\gamma n}{2 \cdot 4^{d}} \cdot t \quad \text { for all } \quad T \subset W_{i}, t=|T| \leq \frac{\gamma}{p} \tag{12}
\end{equation*}
$$

This will also imply that a.a.s. all sets T with $\frac{\gamma}{p}<t \leq \frac{100}{p}$ satisfy

$$
|N(T)| \geq p^{d} \frac{\gamma n}{2 \cdot 4^{d}} \cdot \frac{\gamma}{p} \geq \frac{100}{p} \geq t
$$

To prove (12), we fix a set $T=\left\{w_{1}, \ldots, w_{t}\right\} \subset W_{i}, t \leq \frac{\gamma}{p}$, and begin by constructing a disjoint family $\mathcal{N}=\left\{N_{k} \subseteq G\left(w_{k}\right): k=1, \ldots, t\right\}$ such that $\left|N_{k}\right|=p n / 2$ for every $w \in T$.

Claim 10. There is a disjoint family $\mathcal{N}=\left\{N_{k} \subseteq G\left(w_{k}\right): k=1, \ldots, t\right\}$ such that $\left|N_{k}\right|=p n / 2$ for every $k=1, \ldots, t$.

Proof. We will construct the desired family using a simple matching argument. A folklore corollary of Hall's theorem states that if for some integer s

$$
\left|\bigcup_{w \in T^{\prime}} G(w)\right| \geq s\left|T^{\prime}\right|
$$

for every $T^{\prime} \subseteq T$, then there exists in G a star-matching saturating T, that is, a forest whose components are stars with s arms and centers at every $w \in T$.

For any $T^{\prime} \subseteq T$, property (i) from Lemma 5 and Bonferroni's inequality yield that

$$
\begin{align*}
\left|\bigcup_{w \in T^{\prime}} G(w)\right| & \geq \sum_{w \in T^{\prime}}|G(w)|-\sum_{w \neq w^{\prime} \in T^{\prime}}\left|G(w) \cap G\left(w^{\prime}\right)\right| \\
& \geq\left|T^{\prime}\right|(1-\nu) p n-\left|T^{\prime}\right|^{2}(1+\nu) p^{2} n \tag{13}\\
& \geq \frac{1}{2} p n\left|T^{\prime}\right|
\end{align*}
$$

where the third inequality holds by our assumption on t. The existence of family \mathcal{N} follows from (13) and the above mentioned corollary of Hall's theorem.

We will estimate $|N(T)|$ from below by counting how many elements $y \in Y_{i}$ are such that for some $k=1, \ldots, t$ we have $H(y) \subseteq \pi^{-1}\left(N_{k}\right)$. Indeed, this containment implies that

$$
\pi(H(y)) \subseteq N_{k} \subseteq G\left(w_{k}\right)
$$

which by (7) means that $\left(y, w_{k}\right) \in E\left(A_{i}^{\pi}\right)$ and thus $y \in N(T)$.
For $k=1, \ldots, t$ set

$$
R_{k}=\left|\left\{y \in Y_{k}: H(y) \subseteq \pi^{-1}\left(N_{k}\right)\right\}\right|
$$

Further, let $R^{T}=R=\sum_{k=1}^{t} R_{k}$. Since the family \mathcal{N} is disjoint, $|N(T)| \geq R$.
Claim 11. For a sufficiently large constant C, we have

$$
\begin{equation*}
\mathbb{P}\left[R^{T}<\frac{t}{2}\left(\frac{p}{4}\right)^{d} m\right] \leq n^{-2 t} \tag{14}
\end{equation*}
$$

Observe that (12) follows directly from Claim 11 and the union bound. Indeed,

$$
\begin{aligned}
& \mathbb{P}\left[\exists T: t=|T| \leq \gamma / p \text { and } R^{T}<\frac{t}{2}\left(\frac{p}{4}\right)^{d} m\right] \\
& \quad \leq \sum_{t=1}^{\gamma / p}\binom{m}{t} n^{-2 t}<\sum_{t} n^{-t}=o(1) .
\end{aligned}
$$

Therefore (II) will be established after we prove Claim 11.
Proof. Let $I_{k}=\mathbb{I}\left[R_{k} \geq\left(\frac{p}{4}\right)^{d} m\right]$ for every k, and let $Z=\sum_{k=1}^{t} I_{k}$. Clearly,

$$
\mathbb{P}\left[R<\frac{t}{2}\left(\frac{p}{4}\right)^{d} m\right] \leq \mathbb{P}[Z<t / 2]
$$

For any $a \in\{0,1\}^{t}$ we have

$$
\begin{equation*}
\mathbb{P}\left[I_{k}=a_{k} \text { for all } k\right]=\prod_{k=1} \mathbb{P}\left[I_{k}=a_{k} \mid I_{1}=a_{1}, \ldots, I_{k-1}=a_{k-1}\right] \tag{15}
\end{equation*}
$$

We will show that

$$
\begin{equation*}
\mathbb{P}\left[I_{k}=0 \mid I_{1}=a_{1}, \ldots, I_{k-1}=a_{k-1}\right] \leq n^{-6} \tag{16}
\end{equation*}
$$

regardless of the values $a_{1}, a_{2}, \ldots, a_{k-1}$. Let $|a|=\sum_{k=1}^{t} a_{k}$. In view of (15) and (16),

$$
\begin{align*}
\mathbb{P}[Z<t / 2] & =\sum_{a:|a|<t / 2} \mathbb{P}\left[I_{k}=a_{k} \text { for all } k\right] \\
& \leq \sum_{a:|a|<t / 2} n^{-6(t-|a|)} \leq 2^{t} n^{-3 t}<n^{-2 t} \tag{17}
\end{align*}
$$

This proves that (16) implies (14). It remains to show (16).
To this end, the inverse of the random map π will be exposed in steps by revealing $\pi^{-1}\left(N_{k}\right)$ one at a time. For $1 \leq k \leq t$, let

$$
\begin{equation*}
X_{k}=X \backslash \bigcup_{j=1}^{k-1} \pi^{-1}\left(N_{j}\right) \text { and } F_{k}=\left\{y \in Y_{i}: H(y) \subset X_{k}\right\} \tag{18}
\end{equation*}
$$

By the definition of F_{k}, for every $y \in Y_{i} \backslash F_{k}$ we have $H(y) \cap\left(X \backslash X_{k}\right) \neq \emptyset$. Since by construction the family $\left\{H(y): y \in Y_{i}\right\}$ is disjoint, it follows that

$$
\left|Y_{i} \backslash F_{k}\right| \leq\left|X \backslash X_{k}\right|=(k-1) \frac{p n}{2} \leq t \frac{p n}{2} \leq \frac{\gamma n}{2} \leq \frac{m}{2}
$$

and thus $\left|F_{k}\right| \geq m / 2$ (see Figure 3).
Suppose that $\pi^{-1}\left(N_{j}\right)$ has been exposed for all $1 \leq j \leq k-1$. In particular, $I_{1}, I_{2}, \ldots, I_{k-1}$ are determined. We need to compute the probability that $I_{k}=0$ conditional on the exposed part of π. In this conditional space, the set $\pi^{-1}\left(N_{k}\right)$ is uniformly chosen among all $\frac{p n}{2}$-subsets of X_{k}.

It will be convenient to switch to a different model where independent choices are made for each vertex of X_{k}. Formally, consider a process which selects vertices of X_{k} independently with probability

$$
q=\frac{p n}{2\left|X_{k}\right|}
$$

to form a random subset of X_{k} denoted by $\left(X_{k}\right)_{q}$.

Fig. 3. Illustration to the proof of Lemma 8, case (II).

To link the two random models, we use Pittel's inequality [15, p. 17]. Let

$$
\mathcal{Q}=\left\{S \subseteq X_{k}:\left|\left\{y \in Y_{k}: H(y) \subseteq S\right\}\right| \geq\left(\frac{p}{4}\right)^{d} m\right\}
$$

and notice that $R_{k}<\left(\frac{p}{4}\right)^{d} m$ is equivalent to $\pi^{-1}\left(N_{k}\right) \notin \mathcal{Q}$. Pittel's inequality then yields

$$
\mathbb{P}\left[I_{k}=0\right]=\mathbb{P}\left[\pi^{-1}\left(N_{k}\right) \notin \mathcal{Q}\right] \leq 3 \sqrt{\frac{p n}{2}} \cdot \mathbb{P}\left[\left(X_{k}\right)_{q} \notin \mathcal{Q}\right]
$$

where all probabilities are conditional upon $\pi^{-1}\left(N_{1}\right), \ldots, \pi^{-1}\left(N_{k-1}\right)$.
Let $Q_{k}=\left|\left\{y \in Y_{k}: H(y) \subseteq\left(X_{k}\right)_{q}\right\}\right|$. Observe that Q_{k} has a binomial distribution with parameters $\left|F_{k}\right|$ and q^{d} and thus with mean

$$
\mu_{k}:=\left|F_{k}\right| q^{d} \geq \frac{m}{2}\left(\frac{p}{2}\right)^{d}
$$

since $q \geq \frac{p}{2}$. Indeed, Q_{k} is the sum of indicator random variables $\mathbb{I}\left[H(y) \subseteq\left(X_{k}\right)_{q}\right]$, where $y \in F_{k}$. The independence of the variables stems from the fact that $\{H(y)$: $\left.y \in Y_{i}\right\}$ is a disjoint family.

Finally, Chernoff's inequality [15, Theorem 2.1] yields, for $d \geq 2$,

$$
\mathbb{P}\left[\left(X_{k}\right)_{q} \notin \mathcal{Q}\right]=\mathbb{P}\left[Q_{k}<\left(\frac{p}{4}\right)^{d} m\right] \leq \mathbb{P}\left[Q_{k}<\frac{1}{2} \mu_{k}\right] \leq \exp \left\{-\frac{\gamma n p^{d}}{2^{d+4}}\right\} \leq n^{-7}
$$

by our choice of C and the fact that $m \geq \gamma n$. Therefore, (16) holds and the claim is proved.

We have proved that both (I) and (II) hold and therefore Lemma 8 and consequently Theorem 7 follow.

Fig. 4. An illustration of the definition given by (19).
4. An embedding scheme for bounded degree graphs. In this section we prove Theorem 2 by providing a scheme that embeds any graph H with $\Delta(H) \leq d$ and $|V(H)|=n$ into any given graph G satisfying properties (i)-(iii) from Lemma 6 . Throughout the proof we assume that $d \geq 2$.

The embedding is done in two phases. It starts by embedding one vertex at a time until almost all the vertices of the graph are embedded. The rest of the graph is embedded by finding a perfect matching in some auxiliary graph. The first phase is greedy (it never regrets a decision) but takes into consideration a few invariants that guarantee that the embedding of the whole graph can be done. This structure is quite similar to [17]. However, several differences and subtleties are inherent to the sparse random graph case.

In the first phase we construct a sequence of partial embeddings $f_{0}, f_{1}, f_{2}, \ldots, f_{k}$ for some $k \geq n-\frac{n}{d^{2}+1}$, where each embedding extends the previous by one vertex. In the second phase all the remaining vertices are embedded in a single step.

Let G be a fixed graph satisfying properties (i)-(iii) from Lemma 6 with $\varepsilon=\varepsilon(d)$ sufficiently small. Fix a graph H with $\Delta(H) \leq d$ and n vertices. Label the vertices of H using the elements in $[n]=\{1,2, \ldots, n\}$ in such a way that for $m=n-n /\left(d^{2}+1\right)$, the labels $\{m+1, m+2 \ldots, n\}$ are assigned to 2 -independent vertices, that is, every two vertices are at distance at least 3 from each other. This labeling is indeed possible since the graph $J=H \cup H^{2}$ has degrees bounded by d^{2}. By Brooks's theorem, there is a proper $\left(d^{2}+1\right)$-coloring of J. Label some elements in the largest color class with $m+1, m+2, \ldots, n$. By construction, vertices with the same color are at distance at least 3 from each other.

Before we describe the embedding, we introduce some notation. Denote by U_{j} the set of vertices of H which are not embedded by f_{j}. Similarly, let V_{j} be the set of vertices in G which are not in the image of f_{j}. Define I_{j} to be a bipartite graph with classes $\left(U_{j}, V_{j}\right)$, where for each $x \in U_{j}$ the neighborhood of x,

$$
\begin{equation*}
I_{j}(x)=G^{\cap}\left(f_{j}\left(H(x) \backslash U_{j}\right)\right) \cap V_{j} \tag{19}
\end{equation*}
$$

consists of all "candidates" for $f_{j+1}(x)$. More precisely, the set $I_{j}(x)$ consists of all elements $v \in V_{j}$ such that mapping x to v produces a valid extension of f_{j}. Indeed, in order for the edges incident to x in H to be preserved under the extension, the image of x must be adjacent (in G) to all vertices in $f_{j}\left(H(x) \backslash U_{j}\right)$. See Figure 4 for an illustration of the candidate set's definition.

In view of (19), the neighborhood of a vertex $v \in V_{j}$ is completely determined. Indeed, $x \in I_{j}(v)$ iff $v \in I_{j}(x)$, which means that $v \in G^{\cap}\left(f_{j}\left(H(x) \backslash U_{j}\right)\right)$. Consequently,
one must have $f_{j}\left(H(x) \backslash U_{j}\right) \subset G(v)$. In particular, for every $v \in V_{j}$,

$$
\begin{equation*}
I_{j}(v)=\left\{x \in U_{j}: f_{j}\left(H(x) \backslash U_{j}\right) \subset G(v)\right\} \tag{20}
\end{equation*}
$$

The aim of the first phase is to produce an embedding f_{k} which embeds enough vertices of H so that $U_{k} \subset\{m+1, \ldots, n\}$ is 2 -independent. The fact that the vertices in U_{k} are independent in H implies that their images may be chosen independently (they just need to be distinct for each vertex).

In the second phase we will find a perfect matching in I_{k} which will define the extension of f_{k} into a complete embedding of H into G.
4.1. Phase 1. In this section we introduce an induction hypothesis which is maintained for each $f_{j}, j=0,1, \ldots, k$. The induction step (embedding extension) is introduced in section 4.1.1. The induction is formally proved in section 4.1.3.

Induction Hypothesis. For every $x \in U_{j}$ we have

$$
\begin{equation*}
\left|I_{j}(x)\right| \geq c_{j}(x) \stackrel{\text { def. }}{=}\left(\frac{p}{4}\right)^{\left|H(x) \backslash U_{j}\right|} \frac{n}{4 d^{2}} \tag{21}
\end{equation*}
$$

Moreover, for every $v \in V_{j}$, we have

$$
\begin{equation*}
\left|I_{j}(v)\right| \geq p^{d} \frac{n}{8 d^{5}} \quad \text { and } \quad\left|G(v) \cap V_{j}\right| \geq \frac{p n}{4 d^{2}} \tag{22}
\end{equation*}
$$

The embedding f_{0} is an empty map and since $G^{\cap}(\emptyset)=V(G)$, it follows that $I_{0}=$ $K\left(U_{0}, V_{0}\right)$, the complete bipartite graph with classes $U_{0}=V(H)$ and $V_{0}=V(G)$. It is clear that (21) and the first part of (22) are satisfied for $j=0$. Moreover, since $G(v) \cap V_{0}=G(v)$, property (i) from Lemma 6 implies that the second condition of (22) holds as well. In particular, the induction hypothesis is true for the base case $j=0$.

Let us now consider how the auxiliary graph I_{j+1} evolves from I_{j}. Suppose that f_{j+1} extends f_{j} by mapping $x_{j+1} \mapsto v_{j+1}$. For any $x \in U_{j+1}$, the candidate set $I_{j+1}(x)$ satisfies

$$
I_{j+1}(x)= \begin{cases}I_{j}(x) \backslash\left\{v_{j+1}\right\} & \text { if } x \notin H\left(x_{j+1}\right) \tag{23}\\ I_{j}(x) \cap G\left(v_{j+1}\right) & \text { if } x \in H\left(x_{j+1}\right)\end{cases}
$$

Indeed, when $x \notin H\left(x_{j+1}\right)$ we have $f_{j+1}\left(H(x) \backslash U_{j+1}\right)=f_{j}\left(H(x) \backslash U_{j}\right)$ and since $V_{j+1}=$ $V_{j} \backslash\left\{v_{j+1}\right\}$, we infer by (19) that $I_{j+1}(x)=I_{j}(x) \backslash\left\{v_{j+1}\right\}$. On the other hand, if $x \in$ $H\left(x_{j+1}\right)$, then $f_{j+1}\left(H(x) \backslash U_{j+1}\right)=f_{j}\left(H(x) \backslash U_{j}\right) \cup\left\{v_{j+1}\right\}$ and consequently $I_{j+1}(x)=$ $I_{j}(x) \cap G\left(v_{j+1}\right)$.

Observe that every vertex $v \in V_{j+1}$ satisfies

$$
I_{j+1}(v)= \begin{cases}I_{j}(v) \backslash\left\{x_{j+1}\right\} & \text { if } v \in G\left(v_{j+1}\right), \tag{24}\\ I_{j}(v) \backslash\left(\left\{x_{j+1}\right\} \cup H\left(x_{j+1}\right)\right) & \text { if } v \notin G\left(v_{j+1}\right) .\end{cases}
$$

Indeed, for every $x \in I_{j}(v)$ with $x \in H\left(x_{j+1}\right)$ we infer by (23) that $x \in I_{j+1}(v)$ iff $v \in G\left(v_{j+1}\right)$. In the case $x \in I_{j}(v)$ with $x \notin H\left(x_{j+1}\right), x \neq x_{j+1}$, we have $x \in I_{j+1}(v)$.

Notice that a vertex v may lose at most $d+1$ neighbors after a single vertex extension. Therefore, the only neighborhoods that ever shrink considerably are the neighborhoods of vertices in $H\left(x_{j+1}\right) \cap U_{j+1}$.
4.1.1. Induction step: Extending the embedding. Here we describe how the embeddings are extended. We postpone the proof of the induction step to section 4.1.3. A succinct description of the embedding scheme is stated as Algorithm 1.

Suppose that the partial embedding f_{j} has been constructed (recall that f_{0} is an empty embedding) and satisfies the induction hypothesis. If the set U_{j} is 2 independent, we immediately end the first phase and execute Phase 2.

In each extension, we will look for vertices which are dangerously close to failing the induction hypothesis. For this, we distinguish three cases in the extension. We say that an extension is
H-critical if there exists a vertex $x \in U_{j}$ such that $\left|I_{j}(x)\right|<2 c_{j}(x)$,
G-critical if there exists a vertex $v \in V_{j}$ for which either $\left|I_{j}(v)\right|<p^{d} n /\left(4 d^{5}\right)$ or $\left|G(v) \cap V_{j}\right|<p n /\left(2 d^{2}\right)$, and
normal otherwise.
In our analysis we will show that few extensions are critical (see Lemma 14). (If the conditions for both H - and G-critical extensions hold, we use the convention that the extension is H-critical.)

In an H-critical extension, we choose the vertex $x \in U_{j}$ satisfying $\left|I_{j}(x)\right|<2 c_{j}(x)$ with the smallest label to be embedded. We apply Lemma 12 to such x in order to obtain $v \in I_{j}(x)$ and extend f_{j} by setting $x \mapsto v$. In case the extension is normal, take $x \in U_{j}$ with the smallest label and use Lemma 12 to define the image of x.

If the extension is G-critical, we choose $v \in V_{j}$ to be any of the vertices satisfying either $\left|I_{j}(v)\right|<p^{d} n /\left(2 d^{2}\right)$ or $\left|G(v) \cap V_{j}\right|<p n /\left(2 d^{2}\right)$. We apply Lemma 13 to the chosen vertex v in order to find $x \in I_{j}(v)$ and extend the embedding f_{j} by setting $x \mapsto v$.

Lemma 12 asserts that for any vertex $x \in U_{j}$ there is a candidate $v \in I_{j}(x)$ which ensures that no candidate set shrinks too much (see (23)).

Lemma 12. For any $x \in U_{j}$ there exists $v \in I_{j}(x)$ such that

$$
\left|I_{j}\left(x^{\prime}\right) \cap G(v)\right| \geq \frac{p}{2}\left|I_{j}\left(x^{\prime}\right)\right| \geq \frac{p}{2} c_{j}\left(x^{\prime}\right)
$$

for all $x^{\prime} \in H(x) \cap U_{j}$.
Proof. We may assume that $H(x) \cap U_{j} \neq \emptyset$ since otherwise the lemma holds trivially. Let $x^{\prime} \in H(x) \cap U_{j}$ and consider the sets $A=I_{j}\left(x^{\prime}\right), B=I_{j}(x) \subset V(G)$. Notice that $\left|H(x) \backslash U_{j}\right|,\left|H\left(x^{\prime}\right) \backslash U_{j}\right| \leq d-1$ (since $x, x^{\prime} \in U_{j}$ are neighbors). It follows by the induction assumption over f_{j} that

$$
p|A||B| \geq p\left(\frac{p}{4}\right)^{2 d-2}\left(\frac{n}{4 d^{2}}\right)^{2}>100 \varepsilon^{-3} n
$$

Applying property (ii) from Lemma 6 to the sets A, B we conclude that all but at most $\varepsilon|B|$ vertices $v \in B=I_{j}(x)$ fail to satisfy $\left|I_{j}\left(x^{\prime}\right) \cap G(v)\right| \geq p\left|I_{j}\left(x^{\prime}\right)\right| / 2$.

Repeating the same argument for every element in $H(x) \cap U_{j}$ shows that there are at most $\varepsilon\left|I_{j}(x)\right|\left|H(x) \cap U_{j}\right| \leq \varepsilon d\left|I_{j}(x)\right|$ vertices in $I_{j}(x)$ that fail to satisfy the conditions of the lemma. Because of our choice of $\varepsilon \ll 1 / d$ the lemma is proved.

Lemma 13 asserts that for any $v \in V_{j}$ there is some $x \in I_{j}(v)$ such that extending the embedding by $x \mapsto v$ does not shrink any candidate set too much.

Lemma 13. For any $v \in V_{j}$ there exists $x \in I_{j}(v) \subset U_{j}$ such that $\left|I_{j}\left(x^{\prime}\right) \cap G(v)\right| \geq$ $p c_{j}\left(x^{\prime}\right)$ for all $x^{\prime} \in H(x) \cap U_{j}$.

Proof. Suppose that the statement fails for some $v \in V_{j}$. In particular, for each vertex $x \in I_{j}(v)$ there is some witness

$$
\begin{equation*}
x^{\prime} \in H(x) \cap U_{j} \quad \text { for which } \quad\left|I_{j}\left(x^{\prime}\right) \cap G(v)\right|<p c_{j}\left(x^{\prime}\right) . \tag{25}
\end{equation*}
$$

We assume that the induction hypothesis holds for f_{j} and thus

$$
\begin{equation*}
\left|G(v) \cap V_{j}\right| \geq p n /\left(4 d^{2}\right) \quad \text { and } \quad\left|I_{j}(v)\right| \geq p^{d} n /\left(8 d^{5}\right) \tag{26}
\end{equation*}
$$

Let W be the set of all witnesses for v. Since a vertex $x^{\prime} \in W$ can only be a witness to a neighbor $x \in H\left(x^{\prime}\right)$, and there are $\left|I_{j}(v)\right|$ choices for x, we must have $|W| \geq\left|I_{j}(v)\right| / d$. Let

$$
\mathcal{W}=\left\{f_{j}\left(H\left(x^{\prime}\right) \backslash U_{j}\right): x^{\prime} \in W\right\} .
$$

Observe that each witness x^{\prime} has a neighbor in $I_{j}(v) \subset U_{j}$ and thus the sets in \mathcal{W} have at most $d-1$ elements each. We claim that every witness x^{\prime} must have a neighbor which was already embedded. Indeed, otherwise $H\left(x^{\prime}\right) \backslash U_{j}=\emptyset$ and, in view of (19) and (21), this implies that $I_{j}\left(x^{\prime}\right)=V_{j}$ and $c_{j}\left(x^{\prime}\right)=n / 4 d^{2}$, which, by the induction assumption, then implies

$$
\left|I_{j}\left(x^{\prime}\right) \cap G(v)\right|=\left|G(v) \cap V_{j}\right| \stackrel{(26)}{\geq} p n /\left(4 d^{2}\right)=p c_{j}\left(x^{\prime}\right)
$$

contradicting (25). We have thus shown that $\emptyset \notin \mathcal{W}$. We will now find a disjoint subfamily $\mathcal{X} \subset \mathcal{W}$ with

$$
|\mathcal{X}|>\frac{|W|}{d^{3}} \geq \frac{\left|I_{j}(v)\right|}{d^{4}} \stackrel{(26)}{\geq} \frac{p^{d} n}{8 d^{9}} \gg \sqrt{n}
$$

in which every set has the same cardinality $1 \leq \ell \leq d-1$. For this, take $W^{*} \subset W \subset$ $V(H)$ to be a maximal 2 -independent set (with respect to H). The family $\mathcal{W}^{*}=$ $\left\{f_{j}\left(H\left(x^{\prime}\right) \backslash U_{j}\right): x^{\prime} \in W^{*}\right\}$ is disjoint by construction and, moreover, $\left|\mathcal{W}^{*}\right|=$ $\left|W^{*}\right| \geq \frac{|W|}{d^{2}+1}$. By the pigeonhole principle, there is $1 \leq \ell \leq d-1$ such that at least $\frac{\left|W^{*}\right|}{d-1}$ sets of \mathcal{W}^{*} have cardinality ℓ. Let $\mathcal{X} \subset \mathcal{W}^{*}$ be the family of all ℓ-sets of \mathcal{W}^{*}. Clearly, $|\mathcal{X}| \geq \frac{\left|W^{*}\right|}{d-1} \geq \frac{|W|}{(d-1)\left(d^{2}+1\right)}>\frac{|W|}{d^{3}}$.

Apply property (iii) from Lemma 6 to $T=G(v) \cap V_{j}$ and \mathcal{X}. By averaging, there exists some $X \in \mathcal{X}$ for which $\#\{w \in T: X \subset G(w)\} \geq(1-\varepsilon) p^{\ell}|T|$. This is equivalent to $\left|G^{\cap}(X) \cap T\right| \geq(1-\varepsilon) p^{\ell}|T|$. Let $x^{\prime} \in W$ be such that $X=f_{j}\left(H\left(x^{\prime}\right) \backslash U_{j}\right)$. Notice that by $(19), I_{j}\left(x^{\prime}\right)=G^{\cap}(X) \cap V_{j}$ and hence $I_{j}\left(x^{\prime}\right) \cap G(v)=G^{\cap}(X) \cap V_{j} \cap G(v)=G^{\cap}(X) \cap T$. Since by (26) $|T| \geq \frac{p n}{4 d^{2}}$, it follows that

$$
\left|I_{j}\left(x^{\prime}\right) \cap G(v)\right| \geq(1-\varepsilon) p^{\ell} \frac{p n}{4 d^{2}} \geq(1-\varepsilon) 4 p\left(\frac{p}{4}\right)^{\ell} \frac{n}{4 d^{2}}>p c_{j}\left(x^{\prime}\right)
$$

However this contradicts the fact that x^{\prime} is a witness.
4.1.2. Bounding the number of critical extensions. We now prove that most of the extensions are normal. An extension that is either G-critical or H-critical will simply be called critical. For the proof we do not need to assume that the induction hypothesis holds.

Lemma 14. There are less than $2 d^{3} \sqrt{n}$ critical extensions during Phase 1.
Proof. Suppose for the sake of contradiction that the C th critical extension, where $C=2 d^{3} \sqrt{n}$, occurs when extending f_{J-1} to f_{J}. At each normal extension, the embedded vertex is the one with the smallest label among all the vertices which have not been embedded so far. In particular, all vertices with labels $\{1,2, \ldots, J-C-1\}$ must have been embedded after f_{J-1} was constructed and thus $U_{J-1} \subset[J-C, n]$.

Observe that U_{J-1} is not 2 -independent as otherwise Phase 1 would have ended before f_{J} was constructed. On the other hand, the set $\left[n-\frac{n}{d^{2}+1}+1, n\right]$ is 2 -independent by our particular choice of labels for $V(H)$. Consequently,

$$
\begin{equation*}
J \leq n-\frac{n}{d^{2}+1}+C . \tag{27}
\end{equation*}
$$

Since $\left|U_{J}\right|=\left|V_{J}\right|=n-J$, (27) implies that $\left|U_{J}\right|=\left|V_{J}\right| \geq \frac{n}{d^{2}+1}-C$.
The lemma follows immediately from Claims 15 and 16 which bound the number of H - and G-critical extensions respectively.

Claim 15. The number of H-critical extensions before f_{J} is at most $d\left(d^{2}+1\right) \sqrt{n}$.
Let $x_{1}, \ldots, x_{h} \in V(H)$ be the vertices which were embedded in H-critical extensions before f_{J} was constructed. Let $j_{i}<J$ be such that x_{i} was (first) embedded by $f_{j_{i}}$. By the definition of an H-critical extension, $\left|I_{j_{i}-1}\left(x_{i}\right)\right|<2 c_{j_{i}-1}\left(x_{i}\right)$. Let $X_{i}=f_{j_{i}-1}\left(H\left(x_{i}\right) \backslash U_{j_{i}-1}\right)$ and notice that by (19), $I_{j_{i}-1}\left(x_{i}\right)=G^{\cap}\left(X_{i}\right) \cap V_{j_{i}-1} \supseteq$ $G^{\cap}\left(X_{i}\right) \cap V_{J}$. In particular

$$
\left|G^{\cap}\left(X_{i}\right) \cap V_{J}\right| \leq\left|I_{j_{i}-1}\left(x_{i}\right)\right|<2 c_{j_{i}-1}\left(x_{i}\right) \stackrel{(21)}{=} 2\left(\frac{p}{4}\right)^{\left|X_{i}\right|} \frac{n}{4 d^{2}} .
$$

Notice that $X_{i} \neq \emptyset$ since otherwise the above inequality implies that $\left|V_{J}\right|<\frac{n}{2 d^{2}}$ and this contradicts the fact that $\left|V_{J}\right| \geq \frac{n}{d^{2}+1}-C$.

Now we will construct a disjoint family $\mathcal{X} \subset\left\{X_{i}: i=1, \ldots, h\right\}$, where all sets have the same cardinality $\ell, 1 \leq \ell \leq d$, and $|\mathcal{X}| \geq \frac{h}{d\left(d^{2}+1\right)}$. To this end, we first select a maximal set $I \subset[h]$ for which $\left\{x_{i}: i \in I\right\}$ is 2-independent. Then we take $\mathcal{X} \subset \mathcal{X}_{I}=\left\{X_{i}: i \in I\right\}$ to be a subfamily containing only the sets with the most frequent cardinality in \mathcal{X}_{I}. Since \mathcal{X}_{I} is a disjoint family with $|I|$ nonempty sets, it is clear that

$$
\begin{equation*}
|\mathcal{X}| \geq \frac{|I|}{d} \geq \frac{h}{d\left(d^{2}+1\right)} . \tag{28}
\end{equation*}
$$

We thus have a disjoint family \mathcal{X} of ℓ-sets in $V(G) \backslash V_{J}$ such that for every $X \in \mathcal{X}$,

$$
\left|G^{\cap}(X) \cap V_{J}\right|<2\left(\frac{p}{4}\right)^{\ell} \frac{n}{4 d^{2}}<\left(\frac{p}{4}\right)^{\ell}\left|V_{J}\right| .
$$

Since $w \in G^{\cap}(X)$ iff $X \subset G(w)$, we obtain

$$
\#\left\{(w, X) \in V_{J} \times \mathcal{X}: X \subset G(w)\right\}=\sum_{X \in \mathcal{X}}\left|G^{\cap}(X) \cap V_{J}\right|<(p / 4)^{\ell}\left|V_{J}\right||\mathcal{X}| .
$$

Because $\left|V_{J}\right| \geq \frac{n}{d^{2}+1}-C \gg \sqrt{n}$, in view of property (iii) from Lemma 6 , we conclude that $|\mathcal{X}|<\sqrt{n}$. Therefore, by (28) we have shown that $h \leq d\left(d^{2}+1\right) \sqrt{n}$, which establishes Claim 15.

Claim 16. The number of G-critical extensions before f_{J} is at most $2 \sqrt{n}$.
By the definition of G-critical extensions, if a vertex $v \in V(G)$ is the cause of the G-critical extension from, say, f_{ℓ} to $f_{\ell+1}(\ell<J)$, then either
(I) $p n /\left(2 d^{2}\right)>\left|G(v) \cap V_{\ell}\right|>\left|G(v) \cap V_{J}\right|$ or
(II) $\left|I_{\ell}(v)\right|<p^{d} n /\left(4 d^{5}\right)$.

Let B be the set of all vertices $v \in V(G)$ which caused G-critical extensions before f_{J} because they satisfy (I). Since

$$
(1-\varepsilon) p\left|V_{J}\right| \geq(1-\varepsilon) p\left(\frac{n}{d^{2}+1}-C\right)>\frac{p n}{2 d^{2}}
$$

every vertex $v \in B$ satisfies $\left|G(v) \cap V_{J}\right|<(1-\varepsilon) p\left|V_{J}\right|$. By property (ii) from Lemma 6 applied to $A=V_{J}$ and B, we must have

$$
|B|<\frac{100 \varepsilon^{-3} n}{p\left|V_{J}\right|}=O\left(p^{-1}\right)=o(\sqrt{n})
$$

Now consider any set $T=\left\{v_{1}, \ldots, v_{t}\right\} \subset V(G), t \leq C$, of vertices that cause a G critical extension before f_{J} because (II) holds. We will construct a disjoint family \mathcal{X} and use property (iii) from Lemma 6 to show that T must have fewer than \sqrt{n} elements. Together with the upper bound on the size of $|B|$, the claim follows.

For every $1 \leq i \leq t$, let $j_{i}<J$ be such that $f_{j_{i}}$ is the first embedding in which v_{i} appears in the image. For such vertices, we have

$$
\begin{align*}
p^{d} n /\left(4 d^{5}\right) & >\left|I_{j_{i}-1}\left(v_{i}\right)\right| \\
& \stackrel{(20)}{=} \#\left\{x \in U_{j_{i}-1}: f_{j_{i}-1}\left(H(x) \backslash U_{j_{i}-1}\right) \subset G\left(v_{i}\right)\right\} \tag{29}\\
& \geq \#\left\{x \in U_{J}: f_{J}\left(H(x) \backslash U_{J}\right) \subset G\left(v_{i}\right)\right\}
\end{align*}
$$

where the last inequality follows since $U_{J} \subset U_{j_{i}-1}$ and therefore $H(x) \backslash U_{j_{i}-1} \subset$ $H(x) \backslash U_{J}$. Moreover, we also conclude by (20) that every $x \in U_{J}$ with $H(x) \backslash U_{J}=\emptyset$ must be in $I_{j_{i}-1}\left(v_{i}\right)$. In other words, for every i,

$$
\left\{x \in U_{J}: H(x) \backslash U_{J}=\emptyset\right\} \subset I_{j_{i}-1}\left(v_{i}\right)
$$

It follows that all but at most $p^{d} n /\left(4 d^{5}\right)$ vertices $x \in U_{J}$ are such that $H(x) \backslash U_{J} \neq \emptyset$.
Next we are going to construct a disjoint family $\mathcal{X} \subset\left\{f_{J}\left(H(x) \backslash U_{J}\right): x \in U_{J}\right\}$ where
(a) each set has the same cardinality $\ell, 1 \leq \ell \leq d$,
(b) no set in \mathcal{X} contains an element of T, and
(c) $|\mathcal{X}| \geq\left(\left|U_{J}\right|-p^{d} n-t d\right) /\left(2 d^{3}\right)>\frac{n}{3 d^{5}}$.

Let $U_{J}^{\prime} \subset U_{J}$ be the set of all vertices $x \in U_{J}$ for which $H(x) \backslash U_{J} \neq \emptyset$ and $f_{J}\left(H(x) \backslash U_{J}\right) \cap T=\emptyset$ - equivalently, $x \notin H\left(f_{J}^{-1}(T)\right)$. There are at most $p^{d} n /\left(4 d^{5}\right)+$ $\left|H\left(f_{J}^{-1}(T)\right)\right|<p^{d} n+d t$ vertices in $U_{J} \backslash U_{J}^{\prime}$. Let $U_{J}^{*} \subset U_{J}^{\prime}$ be a maximal 2-independent subset of U_{J}^{\prime}. Take $\mathcal{X} \subset \mathcal{X}^{*}=\left\{f_{J}\left(H(x) \backslash U_{J}\right): x \in U_{J}^{*}\right\}$ to be a family containing all the sets having the most frequent cardinality in \mathcal{X}^{*}. Since $t \leq C=2 d^{3} \sqrt{n}$, it is simple to check that such \mathcal{X} is a disjoint family satisfying (a)-(c). By construction,

$$
\begin{align*}
\#\left\{\left(v_{i}, X\right) \in T \times \mathcal{X}: X \subset G\left(v_{i}\right)\right\} & \leq \sum_{i=1}^{t} \#\left\{x \in U_{J}^{*}: f_{J}\left(H(x) \backslash U_{J}\right) \subset G\left(v_{i}\right)\right\} \tag{30}\\
& \stackrel{(29)}{<} p^{d} \frac{n}{4 d^{5}}|T| \stackrel{(\mathrm{c})}{\leq} \frac{3}{4} p^{\ell}|T||\mathcal{X}|
\end{align*}
$$

Since $|\mathcal{X}| \gg \sqrt{n}$, in view of property (iii) from Lemma 6, we conclude that $t=|T|<$ \sqrt{n}. Since the number of G-critical extensions before f_{J} is at most $|B|+|T|$, the claim is proved.

Claims 15 and 16 contradict our assumption that there were C critical extensions before f_{J} thus proving the lemma.
4.1.3. Proof of the induction step. Since f_{0} is an empty embedding, by (19) the graph I_{0} is a complete bipartite graph with classes $\left(U_{0}=V(H), V_{0}=V(G)\right)$. Moreover, property (i) from Lemma 6 ensures that every vertex $v \in V_{0}$ satisfies $\mid G(v) \cap$ $V_{0}\left|=|G(v)|>p n / 2\right.$. Consequently, the induction hypothesis holds for f_{0}.

Suppose that the induction hypothesis holds for $f_{0}, f_{1}, \ldots, f_{j-1}, j \geq 1$. The hypothesis could fail for f_{j} either because (21) fails for some $x \in U_{j}$ or because (22) fails for some $v \in V_{j}$. Claims 17 and 18 imply that neither (21) nor (22) fails, thus verifying the induction step.

Claim 17. There is no vertex $x \in U_{j}$ for which (21) fails.
Suppose that there is $x \in U_{j}$ for which (21) fails, namely, $\left|I_{j}(x)\right|<c_{j}(x)$.
Let $\ell, 1 \leq \ell \leq j$, be the largest index such that f_{ℓ} extends $f_{\ell-1}$ by embedding a neighbor x^{*} of x. Such index exists as otherwise x would have no embedded neighbors and this would imply that $\left|I_{j}(x)\right|=\left|V_{j}\right|>c_{j}(x)$. By construction, there are only two ways in which a vertex of $V(H)$ is embedded. For x^{*} this means that either
(a) the image of x^{*} under f_{ℓ} was chosen using Lemma 12 or
(b) x^{*} was selected as the preimage $f_{\ell}^{-1}(v)$ of a vertex $v \in V(G)$ using Lemma 13. In case (a), Lemma 12 (applied with $x \leftarrow x^{*}, j \leftarrow \ell-1$) provides $v \in I_{\ell-1}\left(x^{*}\right)$ for which $f_{\ell}: x^{*} \mapsto v$. Lemma 12 together with (23) ensures that

$$
\left|I_{\ell}\left(x^{\prime}\right)\right|=\left|I_{\ell-1}\left(x^{\prime}\right) \cap G(v)\right| \geq(p / 2) c_{\ell-1}\left(x^{\prime}\right)
$$

for all $x^{\prime} \in H\left(x^{*}\right) \cap U_{\ell-1}$.
In case (b), similarly to (a), we use Lemma 13 and (23) to ensure that $\left|I_{\ell}\left(x^{\prime}\right)\right|=$ $\left|I_{\ell-1}\left(x^{\prime}\right) \cap G(v)\right| \geq p c_{\ell-1}\left(x^{\prime}\right)$ for all $x^{\prime} \in H\left(x^{*}\right) \cap U_{\ell-1}$. In particular, because $x \in$ $H\left(x^{*}\right) \cap U_{\ell-1}$, the conclusions hold for $x^{\prime}=x$ and thus in either case (a) or (b), we have

$$
\left|I_{\ell}(x)\right| \geq \frac{p}{2} c_{\ell-1}(x) \stackrel{(21)}{\geq} 2 c_{\ell}(x)
$$

Moreover, since no neighbor of x was embedded after f_{ℓ}, by (21) we have $c_{\ell}(x)=$ $c_{\ell+1}(x)=\cdots=c_{j}(x)$.

In view of (23), we conclude that $\left|I_{r}(x) \backslash I_{r+1}(x)\right| \leq 1$ for all $\ell \leq r \leq j-1$. Since $\left|I_{\ell}(x)\right| \geq 2 c_{j}(x)$ and $\left|I_{j}(x)\right|<c_{j}(x)$, for some $\ell<r \leq j-1$ we have $2 c_{j}(x)-$ $1 \leq\left|I_{r}(x)\right|<2 c_{j}(x)$. Consequently, $\left|I_{r}(x)\right|, \ldots,\left|I_{j}(x)\right|<2 c_{j}(x)$. The vertex x is a witness that every extension between the embeddings $f_{r}, f_{r+1}, \ldots, f_{j}$ is H-critical. Indeed, during each such extension, some vertex with label smaller than x satisfied the conditions for an H-critical extension.

Observe that

$$
j-r \geq\left|I_{r}(x) \backslash I_{j}(x)\right|=\left|I_{r}(x)\right|-\left|I_{j}(x)\right| \geq\left(2 c_{j}(x)-1\right)-c_{j}(x)=c_{j}(x)-1
$$

Consequently, our assumption that x fails (21) implies that at least $j-r \geq c_{j}(x)-1 \gg$ $2 d^{3} \sqrt{n}$ critical extensions occurred after f_{r}. This contradicts Lemma 14 . Hence, no such $x \in U_{j}$ exists and the claim is proved.

Claim 18. There is no $v \in V_{j}$ for which (22) fails.
Suppose that (22) fails to hold for f_{j} because there is $v \in V_{j}$ which satisfies either $\left|I_{j}(v)\right|<p^{d} n /\left(8 d^{5}\right)$ or $\left|G(v) \cap V_{j}\right|<p n /\left(4 d^{2}\right)$.

It is clear from (24) that for every $\ell \leq j$,

$$
\left|I_{\ell-1}(v)\right| \geq\left|I_{\ell}(v)\right| \geq\left|I_{\ell-1}(v)\right|-(d+1)
$$

Moreover, $\left|V_{\ell-1} \backslash V_{\ell}\right|=1$ for all ℓ. It follows that for $\ell \leq j$, we have

$$
\begin{equation*}
\left|I_{\ell}(v)\right| \leq\left|I_{j}(v)\right|+(d+1)(j-\ell) \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|G(v) \cap V_{\ell}\right| \leq\left|G(v) \cap V_{j}\right|+(j-\ell) \tag{32}
\end{equation*}
$$

Let $\ell<j$ be the largest index for which the extension from f_{ℓ} to $f_{\ell+1}$ was normal. By the conditions for a G-critical extension, we have $\left|I_{\ell}(v)\right| \geq p^{d} n /\left(4 d^{5}\right)$ and $\left|G(v) \cap V_{\ell}\right| \geq p n /\left(2 d^{2}\right)$. From (31) and (32), we have

$$
\begin{align*}
j-\ell & \geq \max \left\{\frac{\left|I_{\ell}(v)\right|-\left|I_{j}(v)\right|}{d+1},\left|G(v) \cap V_{\ell}\right|-\left|G(v) \cap V_{j}\right|\right\} \\
& \geq \max \left\{\frac{p^{d} n /\left(4 d^{5}\right)-\left|I_{j}(v)\right|}{d+1}, \frac{p n}{2 d^{2}}-\left|G(v) \cap V_{j}\right|\right\} \tag{33}
\end{align*}
$$

If $\left|I_{j}(v)\right|<p^{d} n /\left(8 d^{5}\right)$ we obtain $j-\ell \geq p^{d} n /\left[8 d^{5}(d+1)\right]$ and if $\left|G(v) \cap V_{j}\right|<$ $p n /\left(4 d^{2}\right)$ we obtain $j-\ell \geq p n /\left(4 d^{2}\right)$. Either way, the fact that v fails (22) and the definition of p imply that $j-\ell>p^{d} n /\left(16 d^{6}\right) \gg 2 d^{3} \sqrt{n}$. By the definition of ℓ, at least $j-\ell$ critical extensions occurred during the embedding process, which contradicts Lemma 14. Therefore no such $v \in V_{j}$ exists and the claim is established.

We have shown that the induction hypothesis must hold for f_{j} and therefore the proof of the induction is complete.
4.2. Phase 2. Suppose that f_{k} is the partial embedding constructed in Phase 1. The induction hypothesis ensures that

$$
\begin{equation*}
\left|I_{k}(x)\right| \geq c_{k}(x) \geq\left(\frac{p}{4}\right)^{d} \frac{n}{4 d^{2}}>d \sqrt{n} \tag{34}
\end{equation*}
$$

for all $x \in U_{j}$ and

$$
\begin{equation*}
\left|I_{k}(v)\right| \geq p^{d} \frac{n}{8 d^{5}}>d \sqrt{n} \tag{35}
\end{equation*}
$$

for all $v \in V_{j}$.
Moreover, by construction, the set U_{k} is 2-independent in H. Consequently, the family $\mathcal{F}=\left\{H(x): x \in U_{k}\right\}$ is disjoint and each set $H(x)$ is contained in $V(H) \backslash U_{k}$. We claim that if there exists a perfect matching M in I_{k}, the extension f of f_{k} produced by mapping $x \in U_{k}$ to $v \in I_{k}(v)$ for all $(x, v) \in M$ is a valid embedding of H into G. The mapping f is clearly a bijection. Moreover, for every $e=x y \in E(H)$, with both $x, y \notin U_{k}$, the mapping f_{k} is such that $\left\{f_{k}(x), f_{k}(y)\right\} \in E(G)$. For $e=x y \in$ $E(H)$ with $x \in U_{k}$ and $y \notin U_{k}$, we have $f(x) \in I_{k}(x)=G^{\cap}\left(f_{k}(H(x))\right) \cap V_{k} \subset G(f(y))$ and thus $\{f(x), f(y)\} \in E(G)$.

It remains to show that I_{k} contains a perfect matching. Set $m=\left|U_{k}\right|=\left|V_{k}\right|$ and assume that no perfect matching exists. Hall's theorem implies that there are sets $A \subset U_{k}$ and $B=V_{k} \backslash I_{k}(A)$ such that $|A|>\left|I_{k}(A)\right|=m-|B|$. This condition also implies that $I_{k}(B) \subset U_{k} \backslash A$ and thus $\left|I_{k}(B)\right| \leq m-|A|<|B|$. Moreover, (34) and (35) imply that $\left|I_{k}(A)\right|,\left|I_{k}(B)\right|>d \sqrt{n}$ and thus $|A|,|B|>d \sqrt{n}$.

Consider a (disjoint) subfamily $\mathcal{X} \subset\left\{f_{k}(H(x)): x \in A\right\}$ in which every set has the same cardinality and $|\mathcal{X}| \geq|A| / d>\sqrt{n}$. Given the fact that $|\mathcal{X}|>\sqrt{n}$ and $|B|>\sqrt{n}$, after applying property (iii) from Lemma 6 to \mathcal{X} and $B \subset V_{k}$ we infer that there must exist a pair $(w, X) \in B \times \mathcal{X}$ with $X \subset G(w)$ - equivalently, $w \in G^{\cap}\left(f_{k}(H(x))\right)$ for $x \in A$ such that $X=f_{k}(H(x))$. In view of (19), this means that there is an edge in I_{k} connecting $w \in B$ to $x \in A$. This contradicts the definition of B and therefore I_{k} must contain a perfect matching.

```
Algorithm 1. Embedding graphs with bounded degree-Phase 1.
    Input : A graph \(H\) with \(n\) vertices and \(\Delta(H) \leq d\) and a graph \(G\) satisfying
            Properties (i)-(iii) from Lemma 6.
    Output: A partial embedding \(f_{k}: V(H) \rightarrow V(G)\).
    \(j \leftarrow 0\);
    while \(U_{j}\) is not 2-independent do
        if \(\exists x \in U_{j}\) such that \(\left|I_{j}(x)\right|<2 c_{j}(x)\) then
                // H-critical extension
                pick \(x \in U_{j}\) satisfying \(\left|I_{j}(x)\right|<2 c_{j}(x)\) with the smallest label ;
                pick \(v \in I_{j}(x)\) to satisfy the conclusion of Lemma 12 ;
                set \(f_{j+1}: x \mapsto v\);
        else if \(\exists v \in V_{j}\) such that \(\left|I_{j}(v)\right|<\frac{p^{d} n}{4 d^{5}}\) or \(\left|G(v) \cap V_{j}\right|<\frac{p n}{2 d^{2}}\) then
            // G-critical extension
            let \(v \in V_{j}\) be any such vertex ;
            pick \(x \in I_{j}(v)\) to satisfy the conclusion of Lemma 13 ;
            set \(f_{j+1}: x \mapsto v\);
        else
            // normal extension
            let \(x \in U_{j}\) be the vertex with smallest label ;
            pick \(v \in I_{j}(x)\) to satisfy the conclusion of Lemma 12 ;
            set \(f_{j+1}: x \mapsto v\);
        \(j \leftarrow j+1\);
```


REFERENCES

[1] N. Alon, M. Capalbo, Y. Kohayakawa, V. Rödl, A. Ruciński, and E. Szemerédi, Universality and tolerance (extended abstract), in Proceedings of the 41st Annual Symposium on Foundations of Computer Science, IEEE, Los Alamitos, CA, 2000, pp. 14-21.
[2] N. Alon, M. Capalbo, Y. Kohayakawa, V. Rödl, A. Ruciński, and E. Szemerédi, Nearoptimum universal graphs for graphs with bounded degrees (extended abstract), in Approximation, Randomization, and Combinatorial Optimization (Berkeley, CA, 2001), Lecture Notes in Comput. Sci. 2129, Springer, Berlin, 2001, pp. 170-180.
[3] N. Alon and M. Capalbo, Sparse universal graphs for bounded-degree graphs, Random Structures Algorithms, 31 (2007), pp. 123-133.
[4] N. Alon and M. Capalbo, Optimal universal graphs with deterministic embedding, in Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New York, 2008, pp. 373-378.
[5] N. Alon and Z. Füredi, Spanning subgraphs of random graphs, Graphs Combin., 8 (1992), pp. 91-94.
[6] N. Alon, M. Krivelevich, and B. Sudakov, Embedding nearly-spanning bounded degree trees, Combinatorica, 27 (2007), pp. 629-644.
[7] J. Balogh, B. Csaba, M. Pei, and W. Samotij, Large bounded degree trees in expanding graphs, Electron. J. Combin., 17 (2010).
[8] S. N. Bhatt, F. R. K. Chung, F. T. Leighton, and A. L. Rosenberg, Universal graphs for bounded-degree trees and planar graphs, SIAM J. Discrete Math., 2 (1989), pp. 145-155.
[9] B. BollobÁs, Random Graphs, Cambridge Stud. Adv. Math. 73, 2nd ed., Cambridge University Press, Cambridge, UK, 2001.
[10] M. R. Capalbo and S. R. Kosaraju, Small universal graphs, in Proceedings of the Annual ACM Symposium on Theory of Computing, ACM, New York, 1999, pp. 741-749.
[11] D. Dellamonica, Jr., and Y. Kohayakawa, An algorithmic Friedman-Pippenger theorem on tree embeddings and applications, Electron. J. Combin., 15 (2008).
[12] P. Erdős and A. RÉnyi, On random matrices, Magyar Tud. Akad. Mat. Kutató Int. Közl, 8 (1964), pp. 455-461.
[13] A. Frieze and M. Krivelevich, Almost universal graphs, Random Structures Algorithms, 28 (2006), pp. 499-510.
[14] A. Hajnal and E. Szemerédi, Proof of a conjecture of P. Erdős, in Combinatorial Theory and Its Applications, II, North-Holland, Amsterdam, 1970, pp. 601-623.
[15] S. Janson, T. Łuczak, and A. Rucinski, Random Graphs, Wiley-Intersci. Ser. Discrete Math. Optim., Wiley-Interscience, New York, 2000.
[16] A. Johansson, J. Kahn, and V. Vu, Factors in random graphs, Random Structures Algorithms, 33 (2008), pp. 1-28.
[17] J. Komlós, G. N. SÁrkÖzy, and E. Szemerédi, An algorithmic version of the blow-up lemma, Random Structures Algorithms, 12 (1998), pp. 297-312.
[18] O. Riordan, Spanning subgraphs of random graphs, Combin. Probab. Comput., 9 (2000), pp. 125-148.
[19] V. Rödl, A. Ruciński, and A. Taraz, Hypergraph packing and graph embedding, Combin. Probab. Comput., 8 (1999), pp. 363-376.
[20] V. Rödl and A. Ruciński, Perfect matchings in ϵ-regular graphs and the blow-up lemma, Combinatorica, 19 (1999), pp. 437-452.

[^0]: *Received by the editors June 15, 2010; accepted for publication (in revised form) December 5, 2011; published electronically March 13, 2012. An extended abstract of this paper was presented at the Symposium on Discrete Algorithms (SODA 2008).
 http://www.siam.org/journals/sidma/26-1/79882.html
 ${ }^{\dagger}$ Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322 (ddellam@mathcs.emory.edu, rodl@mathcs.emory.edu). The first author was supported by a CAPESFulbright scholarship. The third author was partially supported by NSF grant DMS080070 and the Fund of Mobility of Charles University, Prague.
 ${ }^{\ddagger}$ Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão, 1010, 05508090 São Paulo, Brazil (yoshi@ime.usp.br). This author was partially supported by FAPESP and CNPq through a Temático-ProNEx project (FAPESP 2003/09925-5) and by CNPq (308509/2007-2, 485671/2007-7, and 486124/2007-0).
 ${ }^{\text {§}}$ Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322 (andrzej@mathcs.emory.edu), and A. Mickiewicz University, Poznań, Poland. This author's research was supported by grant N201036 32/2546. Part of the research was performed at Emory University.

[^1]: ${ }^{1}$ Alternatively, we could use the threshold for the appearance of a K_{d+1}-factor in a random graph, which was determined by Johansson, Kahn, and Vu [16].

