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1. Introduction

Given graphs H and G, an embedding of H into G is an injective edge-
preserving map f : V (H) → V (G), that is, an injective map such that for
every e = {u, v} ∈ E(H), we have f(e) = {f(u), f(v)} ∈ E(G). We shall
say that a graph H is contained in G as a subgraph if there is an embedding
of H into G. Given a family of graphs H, we say that G is universal with
respect to H, or H-universal, if every H ∈ H is contained in G as a subgraph.

The construction of sparse universal graphs for various families of graphs
received a considerable amount of attention; see, e.g., [1, 2, 3, 4, 5, 6, 7, 8,
10, 11] and the references therein. Here, we are particularly interested in
(almost) tight H-universal graphs, i.e., graphs whose number of vertices is
(almost) equal to maxH∈H |V (H)|.

Let d ∈ N be a fixed constant and let H(n, d) = {H ⊂ Kn : ∆(H) ≤ d}
denote the class of (pairwise non-isomorphic) n-vertex graphs with maxi-
mum degree bounded by d and H(n, n; d) = {H ⊂ Kn,n : ∆(H) ≤ d} be
the corresponding class for balanced bipartite graphs.

By counting all unlabeled d-regular graphs on n vertices one can easily
show that every H(n, d)-universal graph must have

Ω
(
n2−2/d

)
(1)

edges (see [3] for details). This lower bound was almost matched by a
construction from [4], which was subsequently improved in [2] and [1]. Those
constructions were designed to achieve a nearly optimal bound and as such
they did not resemble a “typical” graph with the same number of edges. To
pursue this direction, in [3], the H(n, d)-universality of random graphs was
also investigated.

For random graphs a slightly better lower bound than (1) is known. In-
deed, any H(n, d)-universal graph must contain as a subgraph a union of
b n
d+1c vertex-disjoint copies of Kd+1, and, in particular, all but at most d

vertices must each belong to a copy of Kd+1. Therefore, recalling the thresh-
old for the latter property (see [17, Theorem 3.22 (i)]), we conclude that the
expected number of edges needed for the H(n, d)-universality of Gn,p must
be

Ω
(
n2−2/(d+1)(log n)1/(d+1

2 )
)
, (2)

a quantity bigger than (1).
We say that Gn,p possesses a property P asymptotically almost surely

(a.a.s.) if P[Gn,p ∈ P] = 1−o(1). In [3], it was proved that for a sufficiently
large constant C:

• (almost tight universality) G(1+ε)n,p is a.a.s. H(n, d)-universal if p =

Cn−1/d log1/d n;
• (bipartite tight universality) Gn,n,p is a.a.s. H(n, n, d)-universal if

p = Cn−1/(2d) log1/(2d) n.
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Note that the first result above deals with embeddings of n-vertex graphs
into random graphs with larger vertex sets, which makes the embedding
somewhat easier. On the other hand, the second result deals with tight
universality at the cost of requiring the graphs to be bipartite and with a
less satisfactory bound.

Those results were improved by the authors in [12, 14], where it was shown

that Gn,n,p is a.a.s. H(n, n, d)-universal if p = Cn−1/d log1/d n, and Gn,p is

a.a.s. H(n, d)-universal if p = Cn−1/(2d) log1/(2d) n (for a sufficiently large
constant C > 0). In this paper, we improve the latter result, by establishing
a density threshold for H(n, d)-universality of Gn,p which matches the best
previous bounds for both, the bipartite tight universality and almost tight
universality in general.

Theorem 1.1. Let d ≥ 3 be fixed and p = p(n) = C n−1/d log1/d n for
some sufficiently large constant C. Then the random graph Gn,p is a.a.s.
H(n, d)-universal.

Observe that there is still a gap between the lower bound (2) and the
upper bound given by Theorem 1.1.

Remark 1.2. In Theorem 1.1 we assume that d ≥ 3 since for d = 2 our
proof would require a few modifications. On the other hand, we feel that for
d = 2 the true bound is much lower. Possibly as low as p = n−2/3(log n)1/3,
which is the threshold for the appearance of a triangle-factor in G(n, p), as
proved by Johansson, Kahn, and Vu [19]. We plan to address the case d = 2
in a separate paper.

Remark 1.3. An interesting notion of ‘almost universality’ has been in-
troduced by Frieze and Krivelevich [15]. Given a family of graphs H and
a probability distribution µ on H, a graph Γ is said to be µ-almost uni-
versal for H if Γ contains a copy of a random graph H sampled from H
according to the distribution µ with high probability. In [15], the case in
which H = G(n, c/n) and Γ = G(n, p) is investigated. Furthermore, explicit
constructions for sparse n-vertex graphs Γ are given in [9] for H = G(n, c/n).

This paper is organized as follows. In the next section we describe a
randomized embedding procedure that attempts to find, for any graph H ∈
H(n, d) and a graph G on n vertices, an embedding f : V (H)→ V (G).

In Section 3 we show that the random graphGn,p with p ≥ C n−1/d log1/d n
a.a.s. satisfies certain properties (conditions (I)–(V) of Lemma 3.1).

Finally, in Sections 4 and 5 we show that if G satisfies conditions (I)–(V)
of Lemma 3.1 then, for any H ∈ H(n, d), the randomized embedding pro-
cedure is a.a.s. successful (and thus H is embeddable in G) (Lemma 4.1).
In particular, any G satisfying (I)–(V) is H(n, d)-universal and thus Theo-
rem 1.1 follows by combining Lemmas 3.1 and 4.1 (see the end of Section 4).
The proof of a technical lemma (Lemma 4.5) is deferred to Section 5, while
a probabilistic inequality used therein is established in the appendix.

Throughout the paper we will use the following notation.
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• For v ∈ V , let

G(v) = {u ∈ V : {u, v} ∈ G}
denote the neighborhood of the vertex v in G.
• For T ⊂ V , let

G(T ) = {v ∈ V \ T : G(v) ∩ T 6= ∅} =
⋃
u∈T

G(u) \ T

denote the neighborhood of the set T in G.
• For T ⊂ V , let G[T ] denote the subgraph of G induced by T .
• For U,W ⊂ V , U ∩W = ∅, we denote by eG(U,W ) = e(U,W ) the

set all of edges of G with one endpoint in U and one in W .
• For a sequence of probability spaces indexed by n, we say that an

event occurs a.a.s. if the probability of the event is 1− o(1) as n→
∞.

We will also make use of the following definition.

Definition 1.4. For t ∈ N and G a graph, a set of vertices S ⊂ V (G) is
called t-independent if every pair of distinct vertices in S is at distance at
least t + 1 in G. A 1-independent set is simply called independent (and
this definition coincides with the usual concept of independence in graph
theory).

The following values will be used throughout the paper and are presented
here for easy reference:

ε = ε(d) =
1

100d4
, τ = 2ε =

1

50d4
, t = bτnc, ω = CL3.1 log n, (3)

where CL3.1 = CL3.1(δ) is the constant of Lemma 3.1.

2. The embedding of H into G

Let d ≥ 3,

ε = ε(d) =
1

100d4
, (4)

and n0 = n0(d) be a sufficiently large integer. Let G be a given n-vertex
graph, n ≥ n0, and H ∈ H(n, d). For our analysis, it will be important to
have a fixed partition of V = V (G):

V = V0 ∪R1 ∪ · · · ∪Rd2+2, where |Ri| = bεnc for all i = 1, . . . , d2 + 2. (5)

(The role of the buffer sets Ri will be explained shortly.)
Without loss of generality, we will assume that H is a maximal graph from

H(n, d) in the sense that |V (H)| = n, and adding any edge to H increases its
maximum degree beyond d. Since in such a graph the vertices with degrees
smaller than d must form a clique, there are at most d of them.

We set X := V (H), and fix

t = bτnc, where τ = 2ε =
1

50d4
. (6)
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Figure 1. The partition of V (H).

In the embedding algorithm we will use the following procedure for pre-
processing H.

The pre-processing of H: Select vertices x1, . . . , xt ∈ X in such a
way that they all have degree d and form a 3-independent set in H (recall
Def. 1.4). (Owing to our choice of t, we may find these t vertices by a simple
greedy algorithm.) Let Si = H(xi) for all i = 1, . . . , t, and set

X0 :=
t⋃

j=1

Sj .

Note that by the 3-independence condition, for all i 6= j, not only Si∩Sj = ∅,
but also there is no edge between Si and Sj in H, that is, eH(Si, Sj) = 0.

Next, consider the square H2 of the graph H, that is, the graph obtained
from H by adding edges between all pairs of vertices at distance two. Since
the maximum degree of H2 is at most d2, by the Hajnal–Szemerédi Theorem
(see [20] for a recent algorithmic version) applied to H2, there is a partition

X = X ′1 ∪X ′2 ∪ · · · ∪X ′d2+1,

such that

•
∣∣|X ′i| − |X ′j |∣∣ ≤ 1 for all i, j;

• each set X ′i, 1 ≤ i ≤ d2 + 1, is independent in H2, and thus, 2-
independent in H.

Finally, set

Xi = X ′i \ {x1, . . . , xt} \X0, i = 1, . . . , d2 + 1,

and Xd2+2 = {x1, . . . , xt}. Hence, we obtain a partition

X = X0 ∪X1 ∪ · · · ∪Xd2+2, (7)

where, for i = 1, . . . , d2 + 1, the sets Xi are 2-independent and

|Xi| ≥
n

d2 + 1
− 1− t(d+ 1) ≥ n

2d2
, (8)

while Xd2+2 is 3-independent, |Xd2+2| = t, and X0 is a (disjoint) union of
the d-element neighborhoods of the vertices in Xd2+2. (See Figure 1 for
an illustration of this partition.) The numbering of the sets X0, . . . , Xd2+2
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Figure 2. An illustration of the graphs G, H, and Ai.

corresponds to the order in which these sets will be embedded into a graph G
by the embedding algorithm.

Another building block of our embedding algorithm is a procedure which,
given a partial embedding fi−1 of H[X0 ∪ · · · ∪Xi−1] into G, constructs an
auxiliary graph Ai. The edges of Ai correspond to valid extensions of the
embedding fi−1.

The auxiliary graph Ai: For i = 1, . . . , d2 +2 and a partial embedding

fi−1 : X0 ∪ · · · ∪Xi−1 → V \
d2+2⋃
j=i

Rj , (9)

let Ai be a bipartite graph with classes Xi and Wi, where,

Wi := V \ im(fi−1) \
d2+2⋃
j=i+1

Rj (10)

and the edge set is given by

E(Ai) =
{

(x, v) ∈ Xi×Wi : fi−1

(
H(x)∩ (X0∪ · · ·∪Xi−1)

)
⊂ G(v)

}
. (11)

Observe that Ai(x), the neighborhood of x in Ai, is the set of all vertices v ∈
Wi for which x 7→ v is a valid extension of the embedding fi−1, while Ai(v)
is the set of all vertices x ∈ Xi for which v is a valid image. See Figure 2
for an illustration of the graph Ai.

Since the set Xi is independent, any matching in Ai saturating Xi corre-
sponds to a valid extension of the embedding fi−1. Hence our objective will
be to find such a matching. (The 2-independence of the Xi’s will only be
used in the analysis of the algorithm for random-like graphs as inputs.)

The embedding will be done in d2 + 2 rounds split into three phases:
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• Phase 1: The sets S1, . . . , St are mapped randomly onto disjoint
cliques of G[V0].
• Phase 2: The sets Xi, i = 1, . . . , d2 + 1, are embedded, one by one,

into the sets Wi defined above.
• Phase 3: The set Xd2+2 is embedded onto the set Wd2+2 of t re-

maining vertices of G.

A potential problem for our proposed embedding scheme is that the can-
didate set for a given vertex x ∈ X = V (H) may be depleted before we
have a chance to embed x. If that happens, there is no way to complete the
embedding. Similarly, a vertex v ∈ V = V (G) may lose all of its neighbors
in the auxiliary graph as a result of an unfortunate sequence of extensions.
In other words, v can be excluded from all candidate sets and thus cannot
be used in the embedding. Since we have to use all vertices of v ∈ V in the
embedding, we must prevent this event as well. Our algorithm incorporates
two devices that help to address these problems.

Buffer vertices in G (used in Phases 2 and 3). We will make sure
that im(fi)∩Ri+1 = ∅ for each i = 0, . . . , d2 + 1. Indeed, from the definition
of Wi in (10),

im(fi) ⊂ im(fi−1) ∪Wi = V \
d2+2⋃
j=i+1

Rj (12)

(see also line 5 of Algorithm 1). In particular, the vertices of Ri+1 can only
appear in the image of fi+1 or an extension of fi+1 (i.e., they are not used
by the partial embeddings f0, f1, . . . , fi). This way the vertices of Ri+1 will
be reserved as a buffer to help embed the set Xi+1, provided the sets Ri+1

will satisfy certain properties in G—see Section 3. Figure 2 shows that Ri
may be used in the image of fi while Ri+1∪· · ·∪Rd2+2 is reserved for future
use (see (12)).

Buffer vertices in H (used in Phase 3). Since the neighborhoods Sj
of the vertices xj from Xd2+2 are embedded during Phase 1, the sets Ai(v)∩
Xd2+2, v ∈ V , remain the same throughout Phase 2. This will help to
ensure the existence of a perfect matching in Ad2+2 in Phase 3, provided the
random choices of f(Sj) satisfy certain properties—see Lemma 4.5.

Now we present our embedding algorithm.
This algorithm finds a desired embedding of H into G as long as it is

successful in lines 2, 6, and 9. The sets Si are embedded into V0 by uniformly
sampling a sequence of pairwise disjoint d-subsets κ1, . . . , κt ⊂ V0 such that
every set κi induces a clique in G. Thus, one (trivial) necessary condition for
the success of the algorithm is that G contains at least t disjoint cliques Kd.
Notice that the map f0 is an embedding, since the edges within Si are
clearly preserved (G[κi] is a clique), while eH(Si, Sj) = 0 holds for all j 6= i
by construction.
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Algorithm 1: The embedding algorithm

Input : A graph H with n vertices and ∆(H) ≤ d and a graph G
together with a vertex partition V = V0 ∪R1 ∪ · · · ∪Rd2+2

with |Ri| = bεnc for all i = 1, . . . , d2 + 2 (see (5)).
Output: An embedding f : V (H)→ V (G) (or the algorithm fails).
// Phase 1

1 Pre-process H, obtaining a partition X = X0 ∪ · · · ∪Xd2+2 as in (7),
where Xd2+2 = {x1, . . . , xt}, H(xj) = Sj for j = 1, . . . , t, and
X0 = S1 ∪ · · · ∪ St.

2 Select a sequence of pairwise disjoint d-element sets κi (1 ≤ i ≤ t) so
that G[κi] is a clique for each i = 1, . . . , t: choose κ1 uniformly at
random from all the possibilities and, having chosen κ1, . . . , κj (j < t),
choose κj+1 uniformly at random from all the possibilities. Stop with
failure if this process is unsuccessful.

3 Define a map f0 : X0 →
⋃t
i=1 κi in such a way that f0(Si) = κi for each

i = 1, . . . , t.
// Phase 2

4 for i = 1 to i = d2 + 1 do

5 Set Wi = V \ im(fi−1) \
d2+2⋃
j=i+1

Rj ;

6 Construct the auxiliary bipartite graph Ai between the sets Xi

and Wi, and find therein a matching Mi of size |Mi| = |Xi|. Stop
with failure if such a matching does not exist.

7 Define the extension fi of fi−1 by setting fi(x) = v for all x ∈ Xi,
where (x, v) ∈Mi, and fi(x) = fi−1(x) for all x ∈ X0 ∪ · · · ∪Xi−1.

// Phase 3

8 Set Wd2+2 = V \ im(fd2+1) (⊃ Rd2+2).

9 Construct the auxiliary bipartite graph Ad2+2 between the sets Xd2+2

and Wd2+2, and find therein a perfect matching Md2+2. Stop with
failure if such a matching does not exist.

10 Define the output embedding f by setting f(x) = v for all x ∈ Xd2+2,
where (x, v) ∈Md2+2, and f(x) = fd2+1(x) for all x ∈ X \Xd2+2.

Two more demanding conditions are that the auxiliary bipartite graphs Ai
from lines 6 and 9 do possess the required matchings. Superficially, we could
have combined the last two phases by including round d2 + 2 into the loop,
however we chose not to do so, because of the much more involved analysis
of the last round. Indeed, it is a lot harder to prove the existence of a
perfect matching in Ad2+2 than the existence of a matching saturating one
side of Ai when the other side is larger (we show in equation (30) below that
|Wi| ≥ |Xi|+ εn for 1 ≤ i ≤ d2 + 1).
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It is worth pointing out that the success of Phase 3 relies entirely on
the (random) outcome of Phase 1. The algorithm’s goal in Phase 3 is to
find a perfect matching in the auxiliary bipartite graph Ad2+2 (which has
classes Xd2+2 and Wd2+2). Recall that the neighborhoods Sj = H(xj) of
the vertices xj ∈ Xd2+2 are completely embedded in Phase 1. Since fd2+1

is an extension of f0, for each xj ∈ Xd2+2 we have fd2+1(Sj) = f0(Sj).
Consequently, by (11),

E(Ad2+2) =
{

(x, v) ∈ Xd2+2 ×Wd2+2 : f0

(
H(x)

)
⊂ G(v)

}
. (13)

This observation is utilized in the analysis of Algorithm 1 in Section 4.

3. Some properties of Gn,p

In this section we show that a random graph Gn,p with p = p(n) as in
Theorem 1.1 a.a.s. satisfies several properties with respect to the distribu-
tion of edges and cliques. These properties are selected in order to jointly
guarantee H(n, d)-universality. More specifically, in Section 4 we will show
that Algorithm 1 is a.a.s. successful on all pairs of input graphs (H,G),
where H ∈ H(n, d) and G satisfies all these properties.

First we will introduce a few more pieces of notation.

• Given a graph G, V (G) = V , and a subset of vertices U ⊂ V , denote
by (

U

Kd

)
the family of all d-element sets T ⊂ U such that the subgraph of G
induced by T is complete, that is, G[T ] ∼= Kd.
• Given a family X = {J1, . . . , Jr} of pairwise disjoint k-subsets of V

and a set U ⊂ V , let B = B(X , U) be the bipartite graph with vertex
classes X and UX := U \

⋃r
i=1 Ji, where an edge (Ji, v) is included

whenever G(v) ⊃ Ji. Furthermore, let

α(X , U) =
∣∣{v ∈ UX : degB(v) ≥ 1}

∣∣. (14)

If all sets Ji are singletons (i.e., k = 1), then we write B(Y,U) instead
of B(X , U), where Y =

⋃r
i=1 Ji.

• We write a = (1± δ)b whenever (1− δ)b ≤ a ≤ (1 + δ)b.
• For C = C(δ) defined in Lemma 3.1 below, set

ω = C log n. (15)

Let ε = ε(d) > 0 be as in (4). Set V = [n] and fix a partition

V = V0 ∪R1 ∪ · · · ∪Rd2+2

satisfying (5). By (4),

|V0| ≥ n− (d2 + 2)εn ≥ 3n

4
. (16)



10 UNIVERSAL RANDOM GRAPHS

Lemma 3.1. For every δ > 0, there exists C > 0 such that the random
graph G = Gn,p with p ≥ Cn−1/d log1/d n a.a.s. satisfies Properties (I)–(V)
below.

(I) (a) For all v ∈ V ,

|G(v) ∩ V0| = (1 + o(1))p|V0|.

(b) For all v 6= v′ ∈ V ,

|G(v) ∩G(v′) ∩ V0| = (1 + o(1))p2|V0|.

(c) For all v 6= v′ ∈ V ,

|G(v) ∩G(v′)| = (1 + o(1))p2n.

(II) (a) For all Y ⊂ V ,

|G(Y ) ∩ V0| ≥ (1− 2δ)p min
(
|Y |, δp−1

)
|V0|. (17)

(b) For all Y ⊂ V with |Y | ≥ ωp−1 and U ⊂ V \Y with |U | ≥ ωp−1,

|E(B(Y,U))| = (1± δ)p |Y | |U |. (18)

(III) (a) For all 1 ≤ k ≤ d, r ≥ 1, every family X = {J1, . . . , Jr} of pair-
wise disjoint k-subsets of V , and U ∈ {V0, R1, . . . , Rd2+2, V },
we have

α(X , U) ≥ (1− 2δ)pk min(r, δp−k) |U |. (19)

(b) For all 1 ≤ k ≤ d, r ≥ ωp−k, every family X = {J1, . . . , Jr}
of pairwise disjoint k-subsets of V , and U ⊂ V \

⋃r
i=1 Ji with

|U | ≥ ωp−k,

|E(B(X , U))| = (1± δ)pkr |U |. (20)

(IV) We have ∣∣∣∣( UKd

)∣∣∣∣ = (1± δ)p(
d
2)
(
|U |
d

)
(21)

for all U ⊂ V satisfying at least one of the following conditions:
(a) U ⊂ G(v) for some v ∈ V and |U | ≥ pn/3, or
(b) U = G(u) ∩G(v) for some distinct u, v ∈ V , or
(c) |U | ≥ |V |/4.

(V) For all v ∈ V0, the number of d-cliques in G[V0] containing v is

(1± δ)p(
d
2)

d

|V0|

(
|V0|
d

)
.

Proof. (I)(a), (b) and (c): These properties easily follow from the Chernoff
bound (see, e.g., [17], Theorem 2.1, page 26).

(II)(a) and (b): These are immediate consequences of (III) with k = 1.
However, in part (a) one needs to choose first an arbitrary Y ′ ⊆ Y of size
|Y ′| = min

(
|Y |, δp−1

)
.
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(III)(a): Without loss of generality we assume that r ≤ δp−k. Let Y =⋃r
i=1 Ji and note that B = B(X , U) is a bipartite random graph with vertex

classes X and U \ Y and edge probability pk. We will establish Property
(III)(a) by counting how many vertices of U \Y are not isolated in B(X , U).

For each v ∈ U \ Y , let Iv denote the indicator random variable of the
event degB(v) ≥ 1 (that is, some Ji ⊂ G(v)). Notice that Iv is a Bernoulli
random variable. Let q denote the expectation of Iv. By the union bound
over the events Ji ⊂ G(v), 1 ≤ i ≤ r, we have q ≤ rpk. Using the assumption
that rpk ≤ δ, and bounds 1 + x ≤ ex (for all x ∈ R), 1 − e−x ≥ x/(x + 1)
(for x < 1), we conclude that

q = 1− (1− pk)r ≥ 1− e−rpk ≥ rpk

1 + rpk
≥ rpk

1 + δ
> (1− δ)rpk.

Thus q = (1± δ)rpk.
Also notice that the variables {Iv : v ∈ U \Y } are mutually independent.

Therefore the distribution of

X :=

∣∣∣∣{v ∈ U \ Y : degB(v) ≥ 1

}∣∣∣∣
is binomial with parameters |U \ Y | = (1 + o(1))|U | and q. The expectation
of X is therefore

(1 + o(1))(1± δ)rpk |U |.
By the Chernoff bound, we thus have X ≥ (1 − 2δ)rpk |U | with probability
at least

1− exp{−cnrpk}
for some c = c(δ) > 0 (recall that |U | = Ω(n)).

On the other hand, the number of choices of the set Y is less than nkr.
Consequently, the probability Property (III)(a) fails for Gn,p is at most

δp−k∑
r=1

nkr exp{−cnrpk} = o(1)

because npk ≥ npd = Cd log n and C is sufficiently large.

(III)(b): Here we are just counting the edges of the bipartite graph
B(X , U) defined above. Setting u = |U |, the expected number of edges
in B is pkru. Hence, again by the Chernoff bound, the probability that
Property (III)(b) fails for Gn,p is at most∑

r≥ωp−k

∑
u≥ωp−k

nkr+u exp{−cpkru} = o(1)

for C > 0 large enough, because rpk ≥ ω and upk ≥ ω.

(IV): Let X := X(d,m, p) be a random variable counting the number of
copies of Kd in Gm,p for some m ≤ n. Let δ > 0 be a fixed small constant.
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From the results of [16] and [18, Corollary 1.7], it follows that

P
[
|X−EX| ≥ δEX

]
≤ exp

{
−c(δ, d)m2pd−1

}
, (22)

provided

m ≥ p(1−d)/2 = C(1−d)/2(n/ log n)
1
2
− 1

2d . (23)

(a): For v ∈ V , expose the random neighborhood G(v). Let us condition
on |G(v)| ≤ 1.01pn (which is an event occurring with probability at least

1 − e−Θ(pn)). For any U ⊂ G(v), m = |U | ≥ pn/3, the graph G[U ] is an
instance of Gm,p. In particular, the assumption (23) on m is satisfied and

the bound (22) applies to the random variable X =
(
U
Kd

)
. Moreover, there

are fewer than n 21.01pn < e2pn choices for v and the set U ⊂ G(v). In view
of (22) and the fact that pn = o(m2pd−1), the union bound yields that with
probability

1− e−Θ(pn) − e2pn exp
{
−c(δ, d)m2pd−1

}
= 1− o(1)

the equation (21) holds for all v ∈ V and all U ⊂ G(v), m = |U | ≥ pn/3.
(b): For distinct u, v ∈ V , expose the random common neighborhood

U = G(u) ∩ G(v) ⊂ V . Since a.a.s. |U | = (1 + o(1))p2n, we condition on
m = |U | > 0.99p2n. As d ≥ 3, m satisfies the assumption (23) and therefore

we may apply (22) to the random variable X =
(
U
Kd

)
. It follows by the

union bound that for all choices of distinct u, v, the set U = G(u) ∩ G(v)
satisfies (21).

(c): This can be established by the union bound over all large subsets
U ⊂ V using the exponential bound given by (22).

(V): By (I)(a), a.a.s. every v ∈ V is such that mv := |G(v) ∩ V0| =
(1 + o(1))p |V0|. Similarly as before, the results of [16] and [18, Corollary
1.7] applied to the variable X = X(d− 1,mv, p) yield

P

[
|X−EX| ≥ δ

2
EX
]
≤ exp

{
−c
(
δ

2
, d− 1

)
m2
vp
d−2

}
,

since mv > pn/2 � p(2−d)/2. There exists a constant c′ > 0 such that for
any fixed vertex v, with probability 1− exp{−c′pd−1n}, we have(

G(v) ∩ V0

Kd−1

)
= (1± δ/2)p(

d−1
2 )
(

(1 + o(1))p |V0|
d− 1

)
= (1± δ)p(

d
2)

d

|V0|

(
|V0|
d

)
.

Since exp{−c′pd−1n} = o(1/n), Property (V) follows from the union bound
over all v ∈ V . �

We close this section with a consequence of Properties (I)(a) and (II)(a)
which will be used only in Section 5.
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Claim 3.2. Suppose W ⊂ V0 satisfies |W | ≤ δn/4, where δ < 1/48. Then∣∣{v ∈ V \W : |G(v) ∩W | ≥ pn/3}
∣∣ ≤ 4

pn
|W |.

Proof. Let U = {v ∈ V \W : |G(v) ∩W | ≥ pn/3} and let Ũ ⊂ U be an
arbitrary subset with

|Ũ | = min{|U |, δ/p}. (24)

Further, set

T = {w ∈W : |G(w) ∩ Ũ | ≥ 2}.
We will show that e(Ũ , T ) is very small. Consequently, since the vertices in

W \T can each absorb at most one edge coming from Ũ and there are many

such edges, the set W \ T has to be significantly larger than Ũ . However,

W itself is not very large, and hence Ũ must be small. In fact, we will show
that |Ũ | < δ/p, and thus by (24), that Ũ = U .

We have

|G(Ũ) ∩ V0| ≤ |T |+ e(Ũ , V0 \ T )

= |T |+ e(Ũ , V0)V0| − e(Ũ , T )

(I)(a)
= |T |+ (1 + o(1))p |Ũ | |V0| − e(Ũ , T ).

(25)

By the definition of the set T ,

e(Ũ , T ) ≥ 2 |T |,

and consequently,

|G(Ũ) ∩ V0| ≤ (1 + o(1))p |Ũ | |V0| −
1

2
e(Ũ , T ).

Since by (24) we have |Ũ | ≤ δ/p, Property (II)(a) implies that the left-hand

side above is at least (1− 2δ)p |Ũ | |V0| and therefore

e(Ũ , T ) ≤ (4δ + o(1))p |Ũ | |V0| < 4δpn |Ũ |.

By the definition of the set U , every vertex v ∈ Ũ ⊆ U satisfies |G(v)∩W | ≥
pn/3 and therefore

e(Ũ ,W \ T ) = e(Ũ ,W )− e(Ũ , T ) ≥
(pn

3
− 4δpn

)
|Ũ |.

Given the definition of T , no vertex in W \ T has more than one neighbor

in Ũ , hence the left-hand side of the inequality above is at most |W \ T |.
Since δ < 1/48, it follows that

|W | ≥ |W \ T | ≥
(pn

3
− 4δpn

)
|Ũ | > pn

4
|Ũ |, (26)

and consequently

|Ũ | < 4

pn
|W | ≤ δ

p
.
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From the definition of Ũ (see (24)) we must have Ũ = U and thus also

|U | ≤ 4

pn
|W |,

as required. �

4. The analysis of Algorithm 1

In this and the next section we show that Algorithm 1 with an input G
satisfying the properties established in Lemma 3.1, with δ = 0.01, is a.a.s.
successful (see Lemma 4.1 below). Consequently, Lemmas 3.1 and 4.1 will
together imply Theorem 1.1 (this formal derivation of Theorem 1.1 is given
at the end of this section; also, see Figure 3 for the overall structure of the
proof of Theorem 1.1). The probability space in Lemma 4.1 is the uniform
space of all initial embedding f0 and corresponds to Step 2 of the algorithm,
the only randomized step therein.

Lemma 4.1. Let ε and τ be as in (4) and (6), respectively, and let

δ = 0.01.

Suppose that G is a graph with vertex set V = [n] partitioned as V = V0 ∪
R1 ∪ · · · ∪ Rd2+2 as in (5), and that p ≥ Cn−1/d log1/d n for a sufficiently
large constant C.

If G and p satisfy Properties (I)–(V) from Lemma 3.1, then Algorithm 1
with input G is a.a.s. successful, that is, for every H ∈ H(n, d) it a.a.s.
outputs an embedding of H into G.

In order to prove Lemma 4.1, observe that Algorithm 1 is successful if it
does not terminate at lines 2, 6, or 9, namely if the following three statements
are satisfied.

(S2) any sequence of pairwise disjoint d-element sets κ1, . . . , κj ⊂ V0

with j < t is such that G
[
V0 \

⋃
1≤i≤j κi

]
contains a d-clique (line 2);

(S6) for each i = 1, . . . , d2 + 1 there is a matching in Ai saturating Xi

(line 6);
(S9) there is a perfect matching in Ad2+2 (line 9).

We are now going to prove the three statements (S2), (S6) and (S9) one
by one (Claims 4.2–4.6 below). The following diagram exhibits the proof
flow of Theorem 1.1.

Claim 4.2. Statement (S2) is true.

Proof. First note that |V0| > 3n/4 and that, by Property (IV)(c), any
subset U ⊂ V with |U | ≥ n/4 contains a d-clique (in fact, it contains
many cliques). Let j < t and suppose j disjoint d-sets κ1, . . . , κj are given.

Let U = V0 \
⋃j
i=1 κi and note that |U | = |V0| − jd > |V0| − td > n/4. This

guarantees the existence of a d-clique in U . �
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Theorem 1.1

Corollary 4.7 Lemma 3.1

Lemma 4.1

Claim 4.2 Claim 4.4 Claim 4.6

Claim 3.2

Lemma 4.3 Lemma 4.5

Claims 5.1, 5.2 and 5.3

Figure 3. The structure of the proof of Theorem 1.1

Statement (S6) will follow from the next, deterministic lemma. We implic-
itly assume that a fixed graphG satisfies Properties (I)–(V) from Lemma 3.1,
and that (4)–(6) hold.

Lemma 4.3. For i = 1, . . . , d2 + 2 and for every Q ⊂ Xi we have

|Ai(Q)| ≥ min{|Q|, |Wi| − ωp−d}. (27)

In particular, if |Wi| ≥ |Xi|+ ωp−d then

|Ai(Q)| ≥ |Q|

for all sets Q ⊂ Xi.

Proof. Let i ∈ {1, . . . , d2 + 1} be fixed. We will now prove that (27) holds
for any Q ⊂ Xi regardless of the particular partial embedding fi−1 (in fact,
we only need fi−1 to be a one-to-one map for this proof). For each k =
0, 1, . . . , d, let

Qk =
{
x ∈ Q :

∣∣fi−1

(
H(x)

)∣∣ = k
}
.

Clearly Q = Q0 ∪ · · · ∪Qd is a partition of Q.
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Note that if Q0 6= ∅ then, by (11), Ai(Q) ⊃ Ai(Q0) = Wi and thus (27)
holds. Hence, assume that Q0 = ∅ and let 1 ≤ k ≤ d be such that |Qk| ≥
|Q|/d.

The proof is split into two cases according to whether Qk is small (|Qk| ≤
ωp−k) or large (|Qk| > ωp−k). First consider the case when Qk is small.
Then,

q := min
{
δp−k, |Qk|

}
≥ δ |Qk|

ω
≥ δ |Q|

ωd
. (28)

Further, notice that

|Ai(Q)| ≥ |Ai(Q) ∩Ri|
(11)
=
∣∣{w ∈ Ri : G(w) ⊃ fi−1

(
H(x)

)
for some x ∈ Q

}∣∣
(14)
= α(X , Ri),

(29)

for X = {fi−1(H(x)) : x ∈ Q}. (The k-sets in the family X are pairwise
disjoint because Q ⊂ Xi is 2-independent in H; they are also disjoint from Ri
since Ri ∩ im(fi−1) = ∅.)

Applying Property (III)(a) with U = Ri yields

α(X , Ri) ≥ (1− 2δ)pk |Ri| q
(5)

≥ (1− 3δ)pk(εn) q.

In particular, for C large enough, we have

|Ai(Q)| ≥ |Ai(Q)| ≥ (1− 3δ)εpkn q ≥ ε

2
Cd log n q ≥ δ−1ωd q

(28)

≥ |Q|.

Consequently, (27) holds when Qk is small.
Now we consider the case when Qk is large, that is, |Qk| > ωp−k. Here

we will prove that |Ai(Q)| ≥ |Wi| −ωp−d and thus establish that (27) holds
when Qk is large. Suppose for the sake of a contradiction that |Ai(Q)| <
|Wi| − ωp−d or, equivalently, |Wi \Ai(Q)| > ωp−d.

Set U = Wi \Ai(Qk) and observe that U ⊃Wi \Ai(Q), which by assump-
tion means that |U | > ωp−d. Also note that Wi ∩ im(fi−1) = ∅ and thus
U ⊂Wi does not intersect any set in X = {fi−1(H(x)) : x ∈ Qk}; in other
words, U ⊂ V \

⋃
J∈X J . Applying Property (III)(b) yields that B(X , U) is

not empty, namely, there is x ∈ Qk and v ∈ U such that fi−1(H(x)) ⊂ G(v).
Hence, (x, v) is an edge in Ai between Qk and U , contradicting the definition
of U = Wi \Ai(Qk). �

Now we are ready to prove statement (S6).

Claim 4.4. Statement (S6) is true. That is, for each i = 1, . . . , d2 + 1, the
graph Ai has a matching saturating Xi.

Proof. Fix 1 ≤ i ≤ d2 + 1 and recall the definition of Wi in (10):

Wi = V \ im(fi−1) \
d2+2⋃
j=i+1

Rj .
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Note that because i ≤ d2 + 1 and n = |X0|+ · · ·+ |Xd2+2|,

|Wi| = n−
∑
j<i

|Xj | −
∑
j>i

|Rj | = |Xi|+
∑
j>i

(|Xj | − |Rj |)

(8)

≥ |Xi|+
∑
j>i

(t− |Rj |) = |Xi|+ (d2 + 2− i)(t− εn)

≥ |Xi|+ t− εn (6)
= |Xi|+ εn.

(30)

For C sufficiently large, we have

εn ≥ C1−dn = ωp−d.

Thus, |Wi| ≥ |Xi|+ωp−d, which, by Lemma 4.3, implies that |Ai(Q)| ≥ |Q|
for all Q ⊂ Xi. Consequently, by Hall’s theorem, there is a matching in Ai
covering Xi. �

For the proof of Statement (S9), besides Lemma 4.3, we will also need
the following probabilistic result.

Lemma 4.5. The random embedding f0 of the sets Si, i = 1, . . . , t, is such
that a.a.s., for every set Y ⊂ V with |Y | ≤ δ(4p)−d, where δ = 0.01, we
have∣∣{x ∈ Xd2+2 : f0

(
H(x)

)
⊂ G(v) for some v ∈ Y

}∣∣ ≥ 1

2

(p
5

)d
t |Y |. (31)

Since the proof of Lemma 4.5 is quite long, we defer it to Section 5.
Meanwhile, we prove the last of our three statements and thus complete the
proof of Lemma 4.1.

Claim 4.6. Statement (S9) is true. That is, a.a.s. the random map f0 is
such that the graph Ad2+2 contains a perfect matching.

Proof. Set h = d2 + 2 for convenience. To prove that Ah has a perfect
matching a.a.s., recall that, as a consequence of (13), for every Y ⊂Wh,

Ah(Y ) =
{
x ∈ Xd2+2 : f0

(
H(x)

)
⊂ G(v) for some v ∈ Y

}
.

Therefore, by Lemma 4.5, a.a.s., for every Y ⊂Wh with |Y | ≤ δ(4p)−d, we
have (see (31)),

|Ah(Y )| ≥ 1

2

(p
5

)d
t |Y | ≥ δ−14dω |Y |, (32)

provided C is large enough. We claim that the condition above ensures that
there is a perfect matching in Ah. Recall that |Xh| = |Wh| = t. Let Q ⊂ Xh.
If |Q| ≤ t−ωp−d then Lemma 4.3 implies that |Ah(Q)| ≥ |Q|. Assume then
that

|Q| ≥ t− ωp−d + 1 (33)

(for simplicity, we assume that ωp−d is an integer), and suppose, for the
sake of contradiction, that |Ah(Q)| ≤ |Q| − 1, or, equivalently, that

|Wh \Ah(Q)| ≥ t− |Q|+ 1. (34)
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Since Ah(Wh \Ah(Q)) ⊂ Xh \Q, it follows that |Ah(Wh \Ah(Q))| ≤ t−|Q|.
Next we will contradict this inequality and therefore prove that |Ah(Q)| ≥
|Q|.

To obtain the desired contradiction we invoke inequality (32) for a set Y ⊂
Wh\Ah(Q) satisfying |Y | = min{|Wh\Ah(Q)|, δ(4p)−d}. We now argue that

|Ah(Y )|
(32)

≥ δ−14dω |Y |

= δ−14dω ×min{|Wh \Ah(Q)|, δ(4p)−d}

≥ min{|Wh \Ah(Q)|, ωp−d}

≥ t− |Q|+ 1.

(35)

The third inequality follows from (33) and (34). Clearly, (35) establishes
the desired contradiction and thus proves the claim. �

Having proved Lemma 4.1 (except for the proof of Lemma 4.5, deferred
to the next section), we conclude this section with the proof of Theorem 1.1.
It will be convenient to state first a corollary of Lemma 4.1.

Corollary 4.7. Let G be a graph as in Lemma 4.1. Then G is H(n, d)-
universal.

Proof. By Lemma 4.1, for every H ∈ H(n, d), Algorithm 1 with input G,
outputs an embedding of H into G with positive probability, and thus such
an embedding exists. �

We finally give the proof of Theorem 1.1.

Proof of Theorem 1.1. Let δ = 1/100 and let C = C(δ) be large enough, as
required by Lemmas 3.1 and 4.1. Let |V | = n and let V = V0∪R1∪· · ·∪Rd2+2

be a partition as in (5) and p ≥ Cn−1/d log1/d n. By Lemma 3.1, a random
graph G ∈ Gn,p, where V (G) = V , a.a.s. satisfies Properties (I)–(V). On
the other hand, by Corollary 4.7 every such graph is H(n, d)-universal. �

5. Proof of Lemma 4.5

Our goal is to prove that a.a.s. the random embedding f0 satisfies (31) for
all Y ⊂ V with |Y | ≤ δ(4p)−d. Recall that the images f0(Si) are created by
randomly selecting from V0 pairwise disjoint d-sets κ1, . . . , κt, each inducing
a clique in G, and then f0 is defined in any way so that f0(Si) = κi for all i.
Let Ω be the space of all such sequences κ =

(
κ1, . . . , κt

)
. A sequence κ is

sampled from Ω by first selecting a d-set κ1 uniformly from
(
V0
Kd

)
, and then

selecting each subsequent κi, i = 2, . . . , t, uniformly from(
V0 \

⋃i−1
j=1 κj

Kd

)
.

Fix an integer

y ≤ δ(4p)−d = o(n), where, we recall, δ = 0.01. (36)
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Notice that, by Property (IV)(c), for every i = 1, . . . , t, we have

(1− δ)p(
d
2)
(
|V0| − td

d

)
≤
∣∣∣∣(V0 \

⋃i−1
j=1 κj

Kd

)∣∣∣∣ ≤ (1 + δ)p(
d
2)
(
|V0|
d

)
,

From now on we will focus on a fixed set

Y ⊂ V with |Y | = y, (37)

and define a random variable corresponding to the left-hand side of (31):

A = AY :=
∣∣{xi ∈ Xd2+2 : f0(H(xi)) ⊂ G(v) for some v ∈ Y

}∣∣
=
∣∣{i ∈ [t] : κi ⊂ G(v) for some v ∈ Y }

∣∣. (38)

We will ultimately show that in the random model described above, the
inequality

A ≥ 1

2

(p
5

)d
ty (39)

fails with such a small probability that the union bound can be applied over
all possible choices for Y still yielding a o(1) failure probability. Conse-
quently, a.a.s. (31) will hold for all choices of Y and thus Lemma 4.5 will
follow.

In view of (39), we are interested in estimating how many d-sets κi are
contained in at least one of the neighborhoods G(v) for v ∈ Y . To this end,
for each i = 0, . . . , t− 1, given disjoint d-cliques κ1, . . . , κi, define

A(κ1, . . . , κi) =
⋃
v∈Y

(
(G(v) ∩ V0) \

⋃i
j=1 κj

Kd

)
. (40)

Let
Ai = 1[κi ∈ A(κ1, . . . , κi−1)]. (41)

Note that

A =
t∑
i=1

Ai. (42)

Let
Z = V0 ∩

⋃
v∈Y

G(v) (43)

and let z = |Z|. Set also

q1 = q1(y) := y
(p

5

)d (36)

≤ δ20−d.

Claim 5.1.
q1n ≤ z ≤ pny.

Proof. By Property (I)(a), for every v ∈ Y
|G(v) ∩ V0| ≤ (1 + o(1))p |V0| < pn,

and thus
z =

∣∣∣V0 ∩
⋃
v∈Y

G(v)
∣∣∣ < pny.
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For the lower bound on z, first consider the case when y = |Y | ≤ ωp−1.
Then we have min{y, δ/p} ≥ δy/ω and, by Property (II)(a),

z ≥ |G(Y ) ∩ V0| ≥ (1− 2δ)p |V0| min{y, δ/p} ≥ δpny

2ω
> q1n.

Now suppose that y = |Y | ≥ ωp−1 and let U = V0 \ (G(Y ) ∪ Y ). As
B(Y, U) = ∅, by Property (II)(b), we must have |U | < ωp−1 = o(n). Since
|U | ≥ |V0| − |Z| − |Y |, by (36),

z = |Z| ≥ |V0| − o(n) > n/2 > q1n,

as required. �

In order to estimate the rate at which the families A(κ1, . . . , κi) shrink,
we introduce another random variable B which helps to keep track of how
many vertices of Z are “consumed” by the sequence κ.

Let
Bi = 1[κi ∩ Z 6= ∅] (44)

and

B =
t∑
i=1

Bi.

Claim 5.2. P[B ≥ 3dzt/n] ≤ exp{−c2dzt/n} ≤ exp{−c3tq1}.

Proof. Observe that, by Property (V), the number of d-cliques in G[V0]
containing a given vertex v ∈ Z can be bounded above by

(1 + δ)p(
d
2)

d

|V0|

(
|V0|
d

)
.

Moreover, by our choice of t in (6), using the Bernoulli inequality (which
states that (1 +x)a ≥ 1 +ax for all a ∈ N and x ≥ −1), we may ensure that(

1− td

|V0|

)d
≥ 1− td2

|V0|
≥ 1− 2

75d2
≥ 0.99.

Thus, it follows that, for any i,

P[Bi = 1 | κ1, . . . , κi−1] ≤ z(1 + δ)p(
d
2)

d

|V0|

(
|V0|
d

)∣∣∣∣(V0 \
⋃i−1
j=1 κj

Kd

)∣∣∣∣−1

(IV)(c)

≤ 1 + δ

1− δ
zd

|V0|
(|V0|)d

(|V0| − (t− 1)d)d
≤ (1 + 3δ)zd |V0|d

|V0|(|V0| − td)d

= (1 + 3δ)
zd

|V0|

(
1− td

|V0|

)−d
≤ (1 + 3δ)

4zd

3n

1

0.99
<

2zd

n
:= q2.

(45)

We now apply Proposition A.1 from the appendix, setting the Xi and the Ki

in that proposition to be the Bi and the κi, respectively, and letting γ = 1/2.
We have just shown in (45) that the hypothesis of (b) in Proposition A.1
holds with q = q2 and Π = 0. Inequality (61) and Claim 5.1 imply that

P[B ≥ 3dzt/n] ≤ exp{−c2dzt/n} ≤ exp{−c3tq1},
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for some constants c2 and c3 > 0. �

Recall that we have fixed a set Y ⊂ V with |Y | = y ≤ δ(4p)−d, and
defined Z = V0 ∩

⋃
v∈Y G(v) and z = |Z| (see (43)). Our last claim asserts

that if B is small, then the families A(κ1, . . . , κi) remain large throughout
the entire process of selecting t random disjoint cliques. Recall that t = bτnc
(see (6)).

Claim 5.3. For a sequence (κ1, . . . , κt) satisfying B = B(κ1, . . . , κt) ≤ 3dzτ ,
we have

|A(κ1, . . . , κt)| ≥ yp(
d
2)
(
pn/4

d

)
. (46)

Proof. Let

W = Z ∩
⋃

1≤i≤t
κi (47)

be the set of all vertices of Z “hit” by some clique κi, and let

Y ′ = {v ∈ Y : |G(v) ∩W | ≥ pn/3}.
Observe that |W | ≤ Bd. By Claim 3.2 with U := Y ′, we thus have

|Y ′| ≤ 4

pn
|W | ≤ 12d2τ

pn
z ≤ 12d2τy. (48)

For every v ∈ Y , we have G(v) ∩ V0 ⊂ Z (recall (43)). Recalling (47), we
see that that, for every v ∈ Y , we have

(G(v) ∩ V0) \
⋃

1≤i≤t
κi = (G(v) ∩ V0) \W. (49)

Therefore, the definition ofA(κ1, . . . , κt) (see (40)) and Bonferroni’s inequal-
ity give that

|A(κ1, . . . , κt)| =
∣∣∣∣⋃
v∈Y

(
(G(v) ∩ V0) \W

Kd

)∣∣∣∣∣
≥
∑
v∈Y

∣∣∣∣((G(v) ∩ V0) \W
Kd

)∣∣∣∣− ∑
v 6=v′∈Y

∣∣∣∣((G(v) ∩G(v′) ∩ V0) \W
Kd

)∣∣∣∣
≥

∑
v∈Y \Y ′

∣∣∣∣((G(v) ∩ V0) \W
Kd

)∣∣∣∣− ∑
v 6=v′∈Y

∣∣∣∣(G(v) ∩G(v′) ∩ V0

Kd

)∣∣∣∣.
(50)

Recall that |V0| ≥ 3n/4. For v ∈ Y \ Y ′, Property (I)(a) yields that

|(G(v) ∩ V0) \W | = |G(v) ∩ V0| − |G(v) ∩W |
≥ (1 + o(1))p |V0| − pn/3 > pn/3.

Hence, the first sum of the last line in (50) may be bounded as follows:∑
v∈Y \Y ′

∣∣∣∣((G(v) ∩ V0) \W
Kd

)∣∣∣∣ (IV)(a)

≥ |Y \ Y ′| (1− δ)p(
d
2)
(
pn/3

d

)
.
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Moreover, by (48) and the definition of τ in (6),

|Y \ Y ′| ≥ (1− 12d2τ)y ≥ 1

2
y,

and thus ∑
v∈Y \Y ′

∣∣∣∣((G(v) ∩ V0) \W
Kd

)∣∣∣∣ ≥ (1− δ)y
2
p(

d
2)
(
pn/3

d

)
. (51)

On the other hand, for v 6= v′ ∈ Y , Property (I)(c) tells us that

|G(v) ∩G(v′) ∩ V0| ≤ |G(v) ∩G(v′)| = (1 + o(1))p2n.

Hence, the second sum of the last line in (50) may be bounded, for every
large enough n, as follows:∑

v 6=v′∈Y

∣∣∣∣(G(v) ∩G(v′) ∩ V0

Kd

)∣∣∣∣ ≤
∑

v 6=v′∈Y

∣∣∣∣(G(v) ∩G(v′)

Kd

)∣∣∣∣
(IV)(b)

≤
(
y

2

)
(1 + δ)p(

d
2)
(

(1 + δ)p2n

d

)
.

(52)

Consequently, by (50), (51), and (52) we obtain

|A(κ1, . . . , κt)| ≥ (1− δ)y
2
p(

d
2)
(
pn/3

d

)
− (1 + δ)

(
y

2

)
p(

d
2)
(

(1 + δ)p2n

d

)
≥ yp(

d
2)

2d!

{
(1− δ)(pn/3)d − (1 + δ)(ypd)

(
(1 + δ)pn

)d}
.

(53)

From (36) we conclude that (ypd)(pn)d ≤ δ(pn/4)d. Using that d ≥ 3 and
that δ = 0.01, we see after a simple calculation that

|A(κ1, . . . , κt)| ≥ yp(
d
2)
(
pn/4

d

)
,

which establishes the claim. �

Claims 5.2 and 5.3, and the fact that

A(∅) ⊃ A(κ1) ⊃ A(κ1, κ2) ⊃ · · · ⊃ A(κ1, . . . , κt),

imply that, with probability at least 1 − exp{−c3tq1}, for all i = 1, . . . , t,
the subsequence (κ1, . . . , κi−1) satisfies

|A(κ1, . . . , κi−1)| ≥ |A(κ1, . . . , κt)| ≥ yp(
d
2)
(
pn/4

d

)
.

Hence, with probability at least 1− exp{−c3tq1}, for all i = 1, . . . , t,

P[Ai = 1 | κ1, . . . , κi−1] =
|A(κ1, . . . , κi−1)|∣∣∣(V0\⋃i−1

j=1 κj
Kd

)∣∣∣
(IV)(c)

≥
y
(pn/4

d

)
(1 + δ)

(
n
d

) > q1.

We now apply Proposition A.1, setting the Xi and the Ki in that proposition
to be the Ai and the κi, respectively, and letting γ = 1/2. We have just
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shown that the hypothesis of (a) in Proposition A.1 holds with q = q1

and Π = exp{−c3tq1}. Inequality (59) then tells us that

P[A ≤ tq1/2] ≤ exp{−c1tq1}, (54)

for some constant c1 > 0. Note that

tq1

2
=

1

2

(p
5

)d
ty.

In other words, with probability at least 1 − exp{−c1tq1} the random em-
bedding f0 satisfies (31) for a fixed set Y . We will now finish the proof of
Lemma 4.5 by using the union bound.

The probability that there is some Y ⊂ V with |Y | ≤ δ(4p)−d that fails
to satisfy (31) is, in view of (6) and (54), at most

δ(4p)−d∑
y=1

(
n

y

)
exp
{
−c1tq1

}
≤
∑
y

exp
{
y log n− c1τn(p/5)dy

}
≤
∑
y

exp
{
y log n

(
1− (c1τ5−d) · Cd

)}
≤
∑
y

n−y = o(1),

(55)

for C large enough. Hence, the probability that (31) fails for some Y is at
most o(1). This completes the proof of Lemma 4.5.

Acknowledgements: We are very thankful to Matas Šileikis for his
suggestions leading to a simplification of the proof of Proposition A.1, as well
as to anonymous referees for their numerous comments the implementation
of which has improved the readability of the paper.

Appendix A.

Here we prove a concentration result used in the proofs of Lemma 4.5 and
Claim 5.2. (For related results, see McDiarmid [21].) Let Ω = K1×· · ·×Kt,
where each Ki is a finite set, and suppose that P = PΩ is a probability
distribution defined on Ω. Let us write (K1, . . . ,Kt) for an element of Ω
drawn according to P.

For each 1 ≤ i ≤ t, let fi : K1 × · · · × Ki → {0, 1} be given. We are
interested in the concentration of the sum X =

∑
1≤i≤tXi of the Bernoulli

r.vs Xi given by

Xi(κ1, . . . , κt) = fi(κ1, . . . , κi) (56)

for all κj ∈ Kj (1 ≤ j ≤ t) and 1 ≤ i ≤ t. We shall work under hypotheses
controlling the conditional expectation of Xi with respect to the Kj (1 ≤
j < i), that is, controlling E[Xi | K1, . . . ,Ki−1] = P[Xi = 1 | K1, . . . ,Ki−1],
on ‘most’ of Ω.
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Proposition A.1. Let Ω, P, X1, . . . ,Xt and X =
∑

1≤i≤tXi be as above.
For every 1 ≤ i ≤ t, let Pi be the random variable

Pi = P[Xi = 1 | K1, . . . ,Ki−1]. (57)

Then, for any γ > 0, there exists a constant c = c(γ) > 0 for which the
following hold.

(a) If

P[Pi ≥ q for all i = 1, . . . , t] ≥ 1−Π, (58)

then

P[X ≤ (1− γ)tq] ≤ exp{−ctq}+ Π. (59)

(b) If

P[Pi ≤ q for all i = 1, . . . , t] ≥ 1−Π, (60)

then

P[X ≥ (1 + γ)tq] ≤ exp{−ctq}+ Π. (61)

Proof. We first prove (a). We give a coupling type argument. Consider
the uniform distribution on Ω′ = [0, 1]t, and write (Ui)1≤i≤t for a random
element of Ω′. Thus, the Ui (1 ≤ i ≤ t) form a sequence of independent
uniform r.vs, each taking values on the unit interval [0, 1]. Let us consider

the product probability space Ω̃ = Ω × Ω′, with probability measure P
Ω̃

=

PΩ ×PΩ′ . We shall define a sequence of r.vs Zi on Ω̃ (1 ≤ i ≤ t) in such a
way that

(i) the Zi (1 ≤ i ≤ t) are independent Bernoulli r.vs with mean q each.

We shall also define a certain ‘bad’ event B ⊂ Ω in such a way that, set-

ting B̃ = B × Ω′ ⊂ Ω̃, we have

(ii) P
Ω̃

[B̃] ≤ Π and, outside B̃, we have Xi ≥ Zi for all 1 ≤ i ≤ t.

With the Zi and B̃ at hand, we may derive part (a) of our proposition as

follows. Let Z =
∑

1≤i≤t Zi and note that, on Ω̃ \ B̃, we have Z ≤ X. Now
observe that, for any γ > 0,

PΩ[X ≤ (1− γ)tq] = P
Ω̃

[X ≤ (1− γ)tq]

≤ P
Ω̃

[X ≤ (1− γ)tq and B̃ fails] + P
Ω̃

[B̃]

≤ P
Ω̃

[Z ≤ (1− γ)tq] + Π,

which, by Chernoff’s inequality applied to the binomial random variable Z
(see, e.g., [17], Theorem 2.1, page 26), implies (59).

It remains to construct the Zi and B. We proceed as follows. Recall
that each Kj takes values in some finite set Kj . Let S =

⋃
0≤i≤t

∏
1≤j≤iKj .

Thus, the i-tuple (K1, . . . ,Ki) takes values in S, for all 1 ≤ i ≤ t. One may
think of S as the node set of a rooted tree, with each κ = (κ1, . . . , κi) ∈ S
(1 ≤ i ≤ t) having as its parent the node (κ1, . . . , κi−1). The root of the
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tree is the empty sequence, which we denote by λ. The points of Ω appear
as leaves in this tree. For each κ = (κj)1≤j<i ∈ S (1 ≤ i ≤ t), let

p(κ) = PΩ[Xi = 1 | Kj = κj for all 1 ≤ j < i]

= PΩ[fi(K1, . . . ,Ki) = 1 | Kj = κj for all 1 ≤ j < i].
(62)

Note that, in particular, p(λ) = PΩ[X1 = 1] = PΩ[f1(K1) = 1].

We first define the event B̃ ⊂ Ω̃. Given κ = (κi)1≤i≤t ∈ Ω ⊂ S, we
say that κ is bad if, for some 1 ≤ i ≤ t, we have p(κ1, . . . , κi−1) < q.
Let B = {κ : κ is bad} and let

B̃ = B × Ω′. (63)

By the definition of B, we have

B̃ = {P
Ω̃

[Xi = 1 | K1, . . . ,Ki−1] < q for some i = 1, . . . , t}. (64)

We now define the Zi (1 ≤ i ≤ t). For every κ = (κ1, . . . , κi−1) ∈ S
with 1 ≤ i ≤ t, let

Bκ =

{
1{Ui ≤ q/p(κ)} if q ≤ p(κ)

1{Ui ≤ q} otherwise.
(65)

Conditional on (K1, . . . ,Ki−1) = κ, we let the value of Zi be given by

Zi =

{
XiBκ if q ≤ p(κ)

Bκ otherwise.
(66)

We now check conditions (i) and (ii) that are required of the Zi and B̃,
as specified in the beginning of the proof. We first prove (i). We have to
show that

E
Ω̃

[Zi | Z1, . . . ,Zi−1] = q (67)

for all 1 ≤ i ≤ t. Let us show that

E
Ω̃

[Zi | K1, . . . ,Ki−1,U1, . . . ,Ui−1] = q (68)

for all 1 ≤ i ≤ t. Fix 1 ≤ i ≤ t, κ = (κ1, . . . , κi−1) ∈ S and u =
(u1, . . . , ui−1) ∈ [0, 1]i−1. Let us condition on (K1, . . . ,Ki−1) = κ and
(U1, . . . ,Ui−1) = u. Suppose first that q > p(κ). Then Zi = Bκ = 1{Ui ≤
q} (see (65) and (66)), and hence Zi is a Bernoulli r.v. with mean q, indepen-
dent of the Kj (1 ≤ j < i) and of the Uj (1 ≤ j < i), and hence (68) follows.
Suppose now that q ≤ p(κ). Then, by the independence of Ki and Ui, we
have

E
Ω̃

[Zi | Kj = κj and Uj = uj (j < i)]

= E
Ω̃

[XiBκ | Kj = κj and Uj = uj (j < i)]

= E
Ω̃

[Xi | Kj = κj and Uj = uj (j < i)]

×E
Ω̃

[Bκ | Kj = κj and Uj = uj (j < i)]

= p(κ)(q/p(κ)) = q.

(69)
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We now derive (67) from (68). Recall that the r.vs K1, . . . ,Ki−1 deter-
mine X1, . . . ,Xi−1. Therefore, K1, . . . ,Ki−1, together with U1, . . . ,Ui−1, de-
termine Z1, . . . ,Zi−1. It follows that

E[Zi | Z1, . . . ,Zi−1] = E
[
E[Zi | K1, . . . ,Ki−1,U1, . . . ,Ui−1] | Z1, . . . ,Zi−1

]
= E[q | Z1, . . . ,Zi−1]

= q.

Therefore, requirement (i) does follow. Let us now check (ii). Fix κ =
(κ1, . . . , κt) ∈ Ω \ B. Note that, for every 1 ≤ i ≤ t, by (63) and (66), we
have

Zi(κ) = Xi(κ)B(κ1,...,κi−1) ≤ Xi(κ),

and hence, Zi ≤ Xi holds outside B̃. Finally, by (58) and (64), we have P
Ω̃

[B̃] ≤
Π, as required. This concludes the proof of (a) of our proposition.

We now sketch the proof of (b). We proceed similarly as above, ex-
cept that we now define the r.vs Bκ and Zi as follows. For every κ =
(κ1, . . . , κi−1) ∈ S with 1 ≤ i ≤ t, let

Bκ =

{
1{Ui ≤ (1− q)/(1− p(κ))} if q ≥ p(κ)

1{Ui ≤ 1− q} otherwise.
(70)

Conditional on (K1, . . . ,Ki−1) = κ, we let the value of Zi be given by

1− Zi =

{
(1− Xi)Bκ if q ≥ p(κ)

Bκ otherwise.
(71)

One may then check that, with an appropriately defined B̃, we have

(i) the Zi (1 ≤ i ≤ t) are independent Bernoulli r.vs with mean q each.

(ii) P
Ω̃

[B̃] ≤ Π and, outside B̃, we have Xi ≤ Zi for all 1 ≤ i ≤ t.
The proof of (b) follows (we omit the details). �
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