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We establish an inclusion relation between two uniform mod-
els of random k-graphs (for constant k ≥ 2) on n labeled 
vertices: G(k)(n, m), the random k-graph with m edges, and 
R(k)(n, d), the random d-regular k-graph. We show that if 
n logn � m � nk we can choose d = d(n) ∼ km/n and 
couple G(k)(n, m) and R(k)(n, d) so that the latter contains 
the former with probability tending to one as n → ∞. This 
extends an earlier result of Kim and Vu about “sandwiching 
random graphs”. In view of known threshold theorems on the 
existence of different types of Hamilton cycles in G(k)(n, m), 
our result allows us to find conditions under which R(k)(n, d)
is Hamiltonian. In particular, for k ≥ 3 we conclude that if 
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nk−2 � d � nk−1, then a.a.s. R(k)(n, d) contains a tight 
Hamilton cycle.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Background

A k-uniform hypergraph (or k-graph for short) on a vertex set V = [n] = {1, . . . , n}
is an ordered pair G = (V, E) where E is a family of k-element subsets of V . The degree
of a vertex v in G is defined as

degG(v) := | {e ∈ E : v ∈ e} |.

A k-graph is d-regular if the degree of every vertex is d. Let R(k)(n, d) be the family 
of all d-regular k-graphs on V . Throughout, we tacitly assume that k divides nd. By 
R

(k)(n, d) we denote the d-regular random k-graph which is chosen uniformly at random 
from R(k)(n, d).

Let us recall two more standard models of random k-graphs on n vertices. For p ∈
[0, 1], the binomial random k-graph G

(k)(n, p) is obtained by including each of the 
(
n
k

)
possible edges with probability p, independently of others. Further, for an integer m ∈
[0, 

(
n
k

)
], the uniform random k-graph G

(k)(n, m) is chosen uniformly at random among 

all 
((n

k

)
m

)
k-graphs on V with precisely m edges.

We study the behavior of these random k-graphs as n → ∞. Parameters d, m, p are 
treated as functions of n and typically tend to infinity in case of d, m, or zero, in case 
of p. Given a sequence of events (An), we say that An holds asymptotically almost surely
(a.a.s.) if P (An) → 1, as n → ∞. Also, we write an � bn and bn � an for an = o(bn).

In 2004, Kim and Vu [11] proved that if logn � d � n1/3/ log2 n then there exists 
a coupling (that is, a joint distribution) of the random graphs G(2)(n, p) and R(2)(n, d)
with p = d

n

(
1 −O

(
(logn/d)1/3

))
such that

G
(2)(n, p) ⊂ R

(2)(n, d) a.a.s. (1)

They pointed out several consequences of this result, emphasizing the ease with which 
one can carry over known properties of G(2)(n, p) to the harder to study regular model 
R

(2)(n, d). Kim and Vu conjectured that such a coupling is possible for all d � log n
(they also conjectured a reverse embedding which is not of our interest here). In [7] we 
considered a (slightly weaker) extension of Kim and Vu’s result to k-graphs, k ≥ 3, and 
proved that

G
(k)(n,m) ⊂ R

(k)(n, d) a.a.s. (2)
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whenever C logn ≤ d � n1/2 and m ∼ cnd for some absolute large constant C and a 
sufficiently small constant c = c(k) > 0. Although (2) is stated for the uniform k-graph 
G

(k)(n, m), it is easy to see that one can replace G(k)(n, m) by G(k)(n, p) with p = m/
(
n
k

)
(see Section 5).

1.2. The main result

In this paper we extend (2) to larger degrees, assuming only d ≤ cnk−1 for some 
constant c = c(k). Moreover, our result implies that, provided logn � d � nk−1, we can 
take m ∼ nd/k, that is, the embedded k-graph contains almost all edges of the regular 
k-graph rather than just a positive fraction, as in [7]. The new result is also valid for 
k = 2 (for the proof of this case alone, see also [10, Section 10.3]), and thus extends (1).

Theorem 1. For each k ≥ 2 there is a positive constant C such that if for some real 
γ = γ(n) and positive integer d = d(n),

C
((

d/nk−1 + (log n)/d
)1/3 + 1/n

)
≤ γ < 1, (3)

and m = (1 − γ)nd/k is an integer, then there is a joint distribution of G(k)(n, m) and 
R

(k)(n, d) with

lim
n→∞

P

(
G

(k)(n,m) ⊂ R
(k)(n, d)

)
= 1.

Remark. In the assumption (3) of Theorem 1 the term 1/n can be omitted when k ≤ 7. 
Indeed, the inequality of arithmetic and geometric means implies that

(d/nk−1 + (log n)/d)1/3 ≥ (2/n(k−1)/2)1/3 ≥ 1/n.

For a given k ≥ 2, a k-graph property is a family of k-graphs closed under isomor-
phisms. A k-graph property P is called monotone increasing if it is preserved by adding 
edges (but not necessarily by adding vertices, as the example of, say, perfect matching 
shows).

Corollary 2. Let P be a monotone increasing property of k-graphs and log n � d �
nk−1. If for some m ≤ (1 − γ)nd/k, where γ satisfies (3), G(k)(n, m) ∈ P a.a.s., then 
R

(k)(n, d) ∈ P a.a.s.

1.3. Comparison with the proof by Kim and Vu

Kim and Vu [11] proved (1) by analyzing a certain algorithm that generates a random 
graph RA, coupling it with R(n, d) so that RA = R(n, d) a.a.s., and then embedding 
G(n, p) into RA a.s.s.
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The algorithm can be described concisely as sequentially generated configuration 
model which rejects a chosen edge (with replacement), if it violates the simplicity of 
the graph. Note that the algorithm may run out of admissible edges before it produces a 
d-regular graph. Refining analysis of Steger and Wormald [17], Kim and Vu [11] proved 
a coupling of RA and R(n, d) for d � n1/3/ log2 n. It is worth mentioning that in another 
paper Kim and Vu [12] proved, for d = n1/3−ε with arbitrary ε > 0, a slightly stronger 
statement that RA is asymptotically uniform, that is,

P (RA = G) = (1 + o(1))|R(n, d)|−1 (4)

uniformly over all G ∈ R(n, d). The last section in [12] reflects some beliefs that this 
result cannot be extended to d larger than n1/3. Although for the coupling of RA and 
R(n, d) it is enough to prove weaker uniformity, when (4) is allowed to fail for o(|R(n, d)|)
graphs, an attempt to extend the approach of Kim and Vu did not seem to be very 
promising.

Another looming obstacle was the dependence of the proof of asymptotic uniformity 
in [11] on an asymptotic formula for |R(n, d)| due to McKay and Wormald [15], which is 
valid for d � n1/2. The problem of asymptotically enumerating R(n, d) had been open 
in the range n1/2 ≤ d � n/ logn since 1991 (see [15]).

In the present paper we avoid both explicit generation of random regular graphs and 
enumeration of regular graphs. Instead we embed G(n, m) directly into R(n, d). For this 
we show that if R(n, d) is revealed edge by edge (by first sampling the graph and then 
exposing its edges in a random order), then the conditional distribution of the next edge 
is nearly uniform over the complement of the current graph (unless we are close to the 
end).

Still, getting a fair estimate for the conditional distribution of the next edge is as hard 
as enumerating graphs with a given degree sequence. We deal with this issue by instead 
estimating ratios of (conditional) probabilities. This allows us to replace asymptotic 
enumeration by relative enumeration, by which we mean comparison of the number of 
ways to extend two graphs G1, G2 (differing just by two edges) to a d-regular graph.

In April 2016, well after the present paper was submitted, Wormald [18] announced a 
proof (as a joint result with Anita Liebenau) of asymptotic enumeration in the missing 
range of d. This makes it more likely that an approach relying on enumeration could 
lead to another proof of our result. However, we have not attempted this.

For the outline of our proof, see Subsection 1.5.

1.4. Hamilton cycles in hypergraphs

To show a more specific application of Theorem 1 we consider Hamilton cycles in 
random regular hypergraphs.

For integers 1 ≤ � < k, define an �-overlapping cycle (or �-cycle, for short) as a k-graph 
in which, for some cyclic ordering of its vertices, every edge consists of k consecutive 
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vertices, and every two consecutive edges (in the natural ordering of the edges induced 
by the ordering of the vertices) share exactly � vertices. (For � > k/2 it implies, of 
course, that some nonconsecutive edges intersect as well.) A 1-cycle is called loose and 
a (k− 1)-cycle is called tight. A spanning �-cycle in a k-graph H is called an �-Hamilton
cycle. Observe that a necessary condition for the existence of an �-Hamilton cycle is that 
n is divisible by k − �. We will assume this divisibility condition whenever relevant.

Let us recall the results on Hamiltonicity of random regular graphs, that is, the case 
k = 2. Asymptotically almost sure Hamiltonicity of R(2)(n, d) was proved by Robinson 
and Wormald [16] for fixed d ≥ 3, by Krivelevich, Sudakov, Vu and Wormald [13] for 
d ≥ n1/2 log n, and by Cooper, Frieze and Reed [3] for C ≤ d ≤ n/C and some large 
constant C.

Much less is known for random hypergraphs. For the binomial models, the thresholds 
were found only recently. First, results on loose Hamiltonicity of G(k)(n, p) were obtained 
by Frieze [8] (for k = 3), Dudek and Frieze [4] (for k ≥ 4 and 2(k− 1)|n), and by Dudek, 
Frieze, Loh and Speiss [6] (for k ≥ 3 and (k−1)|n). As usual, the asymptotic equivalence 
of the models G(k)(n, p) and G(k)(n, m) (see, e.g., Corollary 1.16 in [9]) allows us to 
reformulate the aforementioned results for the random k-graph G(k)(n, m).

Theorem 3 ([8,4,6]). There is a constant C > 0 such that if m ≥ Cn logn, then a.a.s. 
G

(3)(n, m) contains a loose Hamilton cycle. Furthermore, for every k ≥ 4 if m � n log n, 
then a.a.s. G(k)(n, m) contains a loose Hamilton cycle.

From Theorem 3 and the older embedding result (2), in [7] we concluded that there is 
a constant C > 0 such that if C log n ≤ d � n1/2, then a.a.s. G(3)(n, d) contains a loose 
Hamilton cycle. Furthermore, for every k ≥ 4 if log n � d � n1/2, then a.a.s. R(k)(n, d)
contains a loose Hamilton cycle.

Thresholds for �-Hamiltonicity of G(k)(n, m) in the remaining cases, that is, for � ≥ 2, 
were recently determined by Dudek and Frieze [5] (see also Allen, Böttcher, Kohayakawa, 
and Person [1]).

Theorem 4 ([5]).

(i) If k > � = 2 and m � n2, then a.a.s. G(k)(n, m) is 2-Hamiltonian.
(ii) For all integers k > � ≥ 3, there exists a constant C such that if m ≥ Cn� then 

a.a.s. G(k)(n, m) is �-Hamiltonian.

In view of Corollary 2, Theorems 3 and 4 immediately imply the following result that 
was already anticipated by the authors in [7].

Theorem 5.

(i) There is a constant C > 0 such that if C logn ≤ d ≤ nk−1/C, then a.a.s. R(3)(n, d)
contains a loose Hamilton cycle. Furthermore, for every k ≥ 4 there is a constant 
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C > 0 such that if logn � d ≤ nk−1/C, then a.a.s. R(k)(n, d) contains a loose 
Hamilton cycle.

(ii) For all integers k > � = 2 there is a constant C such that if n � d ≤ nk−1/C then 
a.a.s. R(k)(n, d) contains a 2-Hamilton cycle.

(iii) For all integers k > � ≥ 3 there is a constant C such that if Cn�−1 ≤ d ≤ nk−1/C

then a.a.s. R(k)(n, d) contains an �-Hamilton cycle.

We conjecture that in the cases (ii) and (iii) (but not (i)) the assumed lower bound 
for d is actually a threshold for Hamiltonicity in R(k)(n, d), see Section 5.

1.5. Structure of the paper

In the following section we define a k-graph process (R(t))t which reveals edges of the 
random d-regular k-graph one at a time. Then we state a crucial Lemma 6, which says, 
loosely speaking, that unless we are very close to the end of the process, the conditional 
distribution of the (t +1)-th edge is approximately uniform over the complement of R(t). 
Based on Lemma 6, we show that a.a.s. G(k)(n, m) can be embedded in R(k)(n, d), by 
refining a coupling similar to the one we used in [7] and thus proving Theorem 1.

In Section 3 we prove auxiliary results needed in the proof of Lemma 6. They mainly 
reflect the phenomenon that a typical trajectory of the d-regular process (R(t))t has 
concentrated local parameters. In particular, concentration of vertex degrees is deduced 
from a Chernoff-type inequality (the only “external” result used in the paper), while 
(one-sided) concentration of common degrees of sets of vertices is obtained by an appli-
cation of the switching technique (a similar application appeared in [13]).

In Section 4 we prove Lemma 6. First we rephrase it as an enumerative problem 
(counting the number of d-regular extensions of a given k-graph). We prove Lemma 6
by estimating the ratio of the numbers of extensions of two k-graphs which differ just in 
two edges. For this we define two random multi-k-graphs (via the configuration model) 
and couple them using yet another switching.

2. Proof of Theorem 1

We often drop the superscript in notations like G(k) and R(k) whenever k is clear from 
the context.

Let Kn denote the complete k-graph on vertex set [n]. Recall the standard k-graph 
process G(t), t = 0, . . . , 

(
n
k

)
which starts with the empty k-graph G(0) = ([n], ∅) and at 

each time step t ≥ 1 adds an edge εt drawn from Kn \ G(t − 1) uniformly at random. 
We treat G(t) as an ordered k-graph (that is, with an ordering of edges) and write

G(t) = (ε1, . . . , εt), t = 0, . . . ,
(
n

k

)
.

Of course, the random uniform k-graph G(n, m) can be obtained from G(m) by ignoring 
the ordering of the edges.
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Our approach is to represent R(n, d) as an outcome of another k-graph process which, 
to some extent, behaves similarly to (G(t))t. For this, generate a random d-regular 
k-graph R(n, d) and choose an ordering (η1, . . . , ηM ) of its

M := nd

k

edges uniformly at random. Revealing the edges of R(n, d) in that order one by one, we 
obtain a regular k-graph process

R(t) = (η1, . . . , ηt), t = 0, . . . ,M.

For every ordered k-graph G with t edges and every edge e ∈ Kn \G we clearly have

P (εt+1 = e |G(t) = G) = 1(
n
k

)
− t

.

This is not true for R(t), except for the very first step t = 0. However, it turns out that 
for the most of the time, the conditional distribution of the next edge in the process R(t)
is approximately uniform, which is made precise by the lemma below. To formulate it 
we need some more definitions.

Given an ordered k-graph G, let RG(n, d) be the family of extensions of G, that is, 
ordered d-regular k-graphs the first edges of which are equal to G. More precisely, setting 
G = (e1, . . . , et),

RG(n, d) = {H = (f1, . . . , fM ) : fi = ei, i = 1, . . . , t, and H ∈ R(k)(n, d)}.

We say that a k-graph G with t ≤ M edges is admissible, if RG(n, d) �= ∅ or, equivalently, 
P (R(t) = G) > 0. We define, for admissible G,

pt+1(e|G) := P (ηt+1 = e |R(t) = G) , t = 0, . . . ,M − 1. (5)

Given ε ∈ (0, 1), we define events

At =
{
pt+1(e|R(t)) ≥ 1 − ε(

n
k

)
− t

for every e ∈ Kn \ R(t)
}
, t = 0, . . . ,M − 1. (6)

Now we are ready to state the main ingredient of the proof of Theorem 1.

Lemma 6. Suppose that ε = ε(n) ∈ (0, 1) is such that (1 −ε)M is an integer, and consider 
the event

A := A0 ∩ · · · ∩ A(1−ε)M−1.

For every k ≥ 2 there is a positive constant C ′ such that whenever ε and d = d(n) satisfy
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C ′
(
(d/nk−1 + (log n)/d)1/3 + 1/n

)
≤ ε < 1 (7)

then the event A occurs a.a.s.

From Lemma 6, which is proved in Section 4, we deduce Theorem 1 using a coupling 
similar to the one which was used in [7].

Proof of Theorem 1. Clearly, we can pick ε ≤ γ/3 such that (1 − ε)M is integer and (3)
implies (7) with C ′ being some constant multiple of C.

Let us first outline the proof. We will define a k-graph process R′(t) := (η′1, . . . , η′t), 
t = 0, . . . , M such that for every admissible k-graph G with t ≤ M − 1 edges,

P
(
η′t+1 = e |R′(t) = G

)
= pt+1(e|G). (8)

In view of (8), the distribution of R′(M) is the same as the one of R(M) and thus we 
can define R(n, d) as the k-graph R′(M) with order of edges ignored. Then we will show 
that a.a.s. G(n, m) can be sampled from the subhypergraph R′((1 − ε)M) of R′(M).

Now come the details. Set R′(0) to be an empty vector and define R′(t) inductively 
(for t = 1, 2, . . .) as follows. Suppose that k-graphs Rt = R

′(t) and Gt = G(t) have been 
exposed. Draw εt+1 uniformly at random from Kn \ Gt and, independently, generate a 
Bernoulli random variable ξt+1 with the probability of success 1 − ε. If event At has 
occurred, that is,

pt+1(e|Rt) ≥
1 − ε(
n
k

)
− t

for every e ∈ Kn \Rt, (9)

then draw a random edge ζt+1 ∈ Kn \Rt according to the distribution

P (ζt+1 = e|R′(t) = Rt) :=
pt+1(e|Rt) − (1 − ε)/(

(
n
k

)
− t)

ε
≥ 0,

where the inequality holds by (9). Observe also that

∑
e∈Kn\Rt

P (ζt+1 = e|R′(t) = Rt) = 1,

so ζt+1 has a well-defined distribution. Finally, fix an arbitrary bijection fRt,Gt
: Rt\Gt →

Gt \Rt between the sets of edges and define

η′t+1 =

⎧⎪⎪⎨
⎪⎪⎩
εt+1, if ξt+1 = 1, εt+1 ∈ Kn \Rt,

fRt,Gt
(εt+1), if ξt+1 = 1, εt+1 ∈ Rt,

ζ , if ξ = 0.
(10)
t+1 t+1
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If the event At fails, then η′t+1 is sampled directly (without defining ζt+1) according to 
probabilities (5). Such a definition of η′t+1 ensures that

At ∩ {ξt+1 = 1} =⇒ εt+1 ∈ R
′(t + 1). (11)

Further, define a random subsequence of edges of G((1 − ε)M),

S := {εi : ξi = 1 , i ≤ (1 − ε)M} .

Conditioning on the vector (ξi) determines |S|. If |S| ≥ m, we define G(n, m) to have 
the edge set consisting of the first m edges of S (note that since the vectors (ξi) and 
(εi) are independent, these m edges are uniformly distributed), and if |S| < m, then we 
define G(n, m) as a graph with edges {ε1, . . . , εm}.

Let event A be as in Lemma 6. The crucial thing is that by (11) we have

A =⇒ S ⊂ R
′(M).

Therefore

P (G(n,m) ⊂ R(n, d)) ≥ P ({|S| ≥ m} ∩ A) .

Since by Lemma 6 event A holds a.a.s., to complete the proof it suffices to show that 
P (|S| < m) → 0.

To this end, note that |S| is a binomial random variable, namely,

|S| =
(1−ε)M∑

i=1
ξi ∼ Bin((1 − ε)M, 1 − ε),

with

E|S| ≥ (1 − 2ε)M and Var|S| = (1 − ε)2εM ≤ εM. (12)

Recall that ε ≤ γ/3 and thus m = (1 − γ)M ≤ (1 − 3ε)M . By (12), Chebyshev’s 
inequality, and the inequality ε ≥ C ′ log n/d, which follows from (7), we get

P (|S| < m) ≤ P (|S| − E|S| < −εM) ≤ εM

(εM)2 = k

εnd
≤ k

C ′n logn → 0. � (13)

3. Preparations for the proof of Lemma 6

Throughout this section we adopt the assumptions of Lemma 6, that is, (1 − ε)M is 
an integer and (7) holds with a sufficiently large C ′ = C ′(k) ≥ 1. In particular,
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ε ≥ C ′(logn/d)α, (14)

ε ≥ C ′(d/nk−1)α (15)

for every α ≥ 1/3, and

ε ≥ C ′/n. (16)

Given a k-graph G with maximum degree at most d, let us define the residual degree of 
a vertex v ∈ V (G) as

rG(v) = d− degG(v).

We begin our preparations toward the proof of Lemma 6 with a fact which allows one 
to control the residual degrees of the evolving k-graph R(t) = (η1, . . . , ηt). For a vertex 
v ∈ [n] and t = 0, . . . , M , define random variables

Xt(v) = rR(t)(v) = | {i ∈ (t,M ] : v ∈ ηi} |.

Given an integer t ∈ [0, M ], we will use a shorthand

τ = 1 − t

M
.

We will usually assume t ≤ (1 − ε)M , which implies τ ≥ ε.

Claim 7. For every k ≥ 2 there is a constant a = a(k) > 0 such that a.a.s.

∀t ≤ (1 − ε)M, ∀v ∈ [n], |Xt(v) − τd| ≤
√
aτd logn ≤ τd/2 − 1. (17)

Proof. A crucial observation is that the concentration of the degrees depends solely on 
the random ordering of the edges and not on the structure of the k-graph R(M). If we 
fix a d-regular k-graph H and condition R(M) to be a random permutation of the edges 
of H, then Xt(v) is a hypergeometric random variable with expectation

EXt(v) = (M − t)d
M

= τd.

Using Theorem 2.10 in [9] together with inequalities (2.5) and (2.6) therein, we get

P (|Xt(v) − τd| ≥ x) ≤ 2 exp
{
− x2

2τd (1 + x/(3τd))

}
.

Let a = 3(k + 2) and x =
√
aτd logn. Condition (14) with α = 1 and C ′ ≥ 9a implies 

that
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τd ≥ εd ≥ C ′ log n. (18)

Therefore

x/(τd) =
√

a logn/(τd) ≤
√
a logn/(εd) ≤

√
a/C ′ ≤ 1/3. (19)

Hence,

P

(
|Xt(v) − τd| ≥

√
aτd logn

)
≤ 2 exp

{
−a

3 log n
}

= 2n−k−2.

Since we have fewer than nM ≤ nk+1 choices of t and v, the first inequality in (17)
follows by taking the union bound.

The second inequality in (17) follows from (19), since

√
aτd logn = x ≤ τd/3 ≤ τd/2 − 1,

where the last inequality holds (for large enough n) by (18). �
Recall that RG(n, d) is the family of extensions of G to a d-regular ordered k-graph. 

For a k-graph H ∈ RG(n, d) define the common degree (relative to subhypergraph 
G ⊆ H) of an ordered pair (u, v) of vertices as

codH|G(u, v) =
∣∣∣{W ∈

( [n]
k−1

)
: W ∪ u ∈ H,W ∪ v ∈ H \G

}∣∣∣ .
Note that codH|G(u, v) is not symmetric in u and v. Also, define the degree of a pair of 
vertices u, v as

degH(u, v) = |{e ∈ H : {u, v} ⊂ e}| .

Claim 8. Let G be an admissible k-graph with t + 1 ≤ (1 − ε)M edges such that

rG(v) ≤ 2τd ∀v ∈ [n]. (20)

Suppose that RG is a k-graph chosen uniformly at random from RG(n, d). There are 
constants C0, C1, and C2, depending on k only such that the following holds.

For each e ∈ Kn \G,

P (e ∈ RG) ≤ C0τd

nk−1 . (21)

Moreover, if � ≥ �1 := C1τd/n, then for every u, v ∈ [n], u �= v,

P

(
deg

R \G(u, v) > �
)
≤ 2−(�−�1). (22)
G
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Fig. 1. Switching (for k = 3): before (a) and after (b).

Also, if � ≥ �2 := C2τd
2/nk−1, then for every u, v ∈ [n], u �= v,

P
(
codRG|G(u, v) > �

)
≤ 2−(�−�2). (23)

Proof. To prove (21), fix e ∈ Kn \G and define families of ordered k-graphs

Re∈ = {H ∈ RG(n, d) : e ∈ H} and Re/∈ = {H ∈ RG(n, d) : e /∈ H} .

In order to compare the sizes of Re∈ and Re/∈, define an auxiliary bipartite graph B
between Re∈ and Re/∈ in which H ∈ Re∈ is connected to H ′ ∈ Re/∈ whenever H ′ can be 
obtained from H by the following operation (known as switching in the literature dating 
back to McKay [14]). Let e = e1 = {v1,1 . . . v1,k} and pick k − 1 more edges

ei = {vi,1 . . . vi,k} ∈ H \G, i = 2, . . . , k

(with vertices labeled in the increasing order within each edge) so that all k edges are 
disjoint. Replace, for each j = 1, . . . , k, the edge ej by

fj := {v1,j . . . vk,j}

to obtain H ′ (see Fig. 1).
Let f(H) = degB(H) be the number of k-graphs H ′ ∈ Re/∈ which can be obtained 

from H, and b(H ′) = degB(H ′) be the number of k-graphs H ∈ Re∈ from which H ′ can 
be obtained. Thus,

|Re∈| · min
H∈Re∈

f(H) ≤ |E(B)| ≤ |Re/∈| · max
H′∈Re/∈

b(H ′). (24)

Note that H \G and H ′\G each have τM−1 edges and, by (20), maximum degrees at 
most 2τd. To estimate f(H), note that because each edge intersects at most k ·2τd other 
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edges of H \G, the number of ways to choose an unordered (k− 1)-tuple {e2, . . . , ek} is 
at least

1
(k − 1)!

k−1∏
i=1

(τM − 1 − ik · 2τd) ≥ (τM − k2 · 2τd)k−1/(k − 1)!. (25)

We have to subtract the (k − 1)-tuples which are not allowed since they would create a 
double edge after the switching (by repeating some edge of H which intersects e1). Their 
number is at most kd · (2τd)k−1. Thus,

f(H) ≥ (τM − 2k2τd)k−1

(k − 1)! − k(2τ)k−1dk

= (τM)k−1

(k − 1)!

((
1 − 2k2d

M

)k−1

− k!(2τ)k−1dk

(τM)k−1

)

= (τM)k−1

(k − 1)!

((
1 − 2k3

n

)k−1

− k!(2k)k−1d

nk−1

)

≥ (τM)k−1

(k − 1)!

(
1 − 2k4

n
− (2k)2kd

nk−1

)
.

By (15) with α = 1, (16), and sufficiently large C ′, we have

2k4

n
+ (2k)2kd

nk−1 ≤ ε(2k4 + (2k)2k)
C ′ ≤ 1/2.

Hence,

f(H) ≥ (τM)k−1

2(k − 1)! . (26)

Since G is admissible, either Re/∈ or Re∈ is non-empty. If Re∈ is non-empty, then by 
(24) and the fact that the right-hand side of (26) is positive we get that Re/∈ is also 
non-empty.

In order to bound b(H ′) from above note that there are at most (2τd)k ways to choose 
a sequence f1, . . . , fk ∈ H ′ \G such that v1,i ∈ fi and we can reconstruct the k− 1-tuple 
e2, . . . , ek in at most ((k − 1)!)k−1 ways (by fixing an ordering of vertices of f1 and 
permuting vertices in other fi’s). Therefore b(H ′) ≤ ((k − 1)!)k−1 · (2τd)k. This, with 
(24) and (26) implies that

P (e ∈ RG) = |Re∈|
|RG(n, d)| ≤

|Re∈|
|Re/∈|

≤ maxH′∈Re/∈ b(H ′)
minH∈Re∈ f(H) ≤ 2((k − 1)!)k(2τd)k

(τM)k−1 = C0τd

nk−1 ,

for some constant C0 = C0(k). This concludes the proof of (21).
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To prove (22), fix distinct u, v ∈ [n], u < v, and define the families

R1(�) =
{
H ∈ RG(n, d) : degH\G(u, v) = �

}
, � = 0, 1, . . . .

Since G is admissible, RG(n, d) is non-empty and thus R1(�) is nonempty for some � ≥ 0. 
Let L1 be the largest such �. From the argument below we will see that actually R1(�)
is non-empty for every � = 0, . . . , L1.

In order to compare sizes of R1(�) and R1(� − 1), � ∈ [1, L], we define the following 
switching which maps a k-graph H ∈ R1(�) to a k-graph H ′ ∈ R1(� − 1). Select e1 ∈
H \ G contributing to degH\G(u, v) and pick k − 1 edges e2, . . . , ek ∈ H \ G so that 
e1, . . . , ek are disjoint. Writing ei = {vi,1 . . . vi,k}, i = 1, . . . , k and, for definiteness, 
labeling vertices inside each ei in the increasing order, replace e1, . . . , ek by f1, . . . , fk, 
where fj = {v1,j . . . vk,j}, for j = 1, . . . , k (as in Fig. 1).

Noting that e1 can be chosen in � ways, we get a lower bound on f(H) very similar 
to that in (26):

f(H) ≥ �
(
(τM − 2k2τd)k−1/(k − 1)! − k(2τ)k−1dk

)
≥ �(τM)k−1

2(k − 1)! . (27)

Since this implies f(H) > 0, we get that whenever R1(�), � ≥ 1, then also R1(� − 1) is 
non-empty. Thus, R1(�) is non-empty for every � = 0, . . . , L1, as mentioned above.

For the upper bound for b(H ′) we choose two disjoint edges in H ′ \ G containing u
and v, respectively, and then k− 2 more edges in H ′ \G not containing u and v so that 
all edges are disjoint. Crudely bounding number of permutations of vertices inside each 
of f1, . . . , fk by (k!)k, we get b(H ′) ≤ (k!)k(2τd)2(τM)k−2. We obtain, for � = �1, . . . , L1,

|R1(�)|
|R1(�− 1)| ≤

maxH′∈R1(�−1) b(H ′)
minH∈R1(�) f(H) ≤ 2(k!)k+1(2τd)2(τM)k−2

�(τM)k−1 ≤ 8(k!)k+1τd

�n
≤ 1

2 ,

by assumption � ≥ �1 = C1τd/n and appropriate choice of constant C1. Further,

P

(
deg

RG\G(u, v) > �
)

=
L1∑

i=�+1

|R1(i)|
|RG(n, d)| ≤

L1∑
i=�+1

|R1(i)|
|R1(�1)|

=
L1∑

i=�+1

i∏
j=�1+1

|R1(j)|
|R1(j − 1)| ≤

∑
i>�

2−(i−�1) = 2−(�−�1), (28)

which completes the proof of (22).
It remains to show (23). Fix an ordered pair (u, v) of distinct vertices and define the 

families
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Fig. 2. Switching (for k = 3): before (a) and after (b).

R2(�) =
{
H ∈ RG(n, d) : codH|G(u, v) = �

}
, � = 0, 1, . . . .

We compare sizes of R2(�) and R2(� − 1) using the following switching. Select two 
distinct edges e0 ∈ H and e1 ∈ H \ G contributing to codH|G(u, v), that is, such that 
e0\{u} = e1\{v}; pick k−1 other edges e2, . . . , ek ∈ H \G so that e1, . . . , ek are disjoint. 
Writing ei = {vi,1 . . . vi,k}, i = 1, . . . , k with v = v1,1, replace e1, . . . , ek by f1, . . . , fk, 
where fj = {v1,j . . . vk,j} for j = 1, . . . , k (see Fig. 2). We estimate f(H) by first fixing 
a pair e0, e1 in one of � ways. The number of choices of e2, . . . , ek is bounded as in (25). 
However, we subtract not just at most kd · (2τd)k−1 (k − 1)-tuples which may create 
double edges, but also (k − 1)-tuples for which (f1 \ {v}) ∪ {u} ∈ H which prevents 
cod(u, v) from being decreased. There are at most d · (2τd)k−1 of such (k − 1)-tuples. 
Hence the bound is very similar to (27) and, omitting very similar calculations, we get

f(H) ≥ �

(
(τM − k2 · 2τd)k−1

(k − 1)! − (k + 1)d · (2τd)k−1
)

≥ �(τM)k−1

2(k − 1)! .

Writing L2 for the largest � such that R2(�) is non-empty, we get that R2(�) is 
nonempty for � = 0, . . . , L2, by a similar argument as with the previous switching.

Conversely, H can be reconstructed from H ′ by choosing an edge e0 ∈ H ′ containing 
u but not containing v and then k disjoint edges fj ∈ H ′ \G, each containing exactly one 
vertex from (e0 \ {u}) ∪ {v} and permuting the vertices inside f2 \ {v1,2}, . . . , fk \ {v1,k}
in at most ((k − 1)!)k−1 ways. Therefore b(H ′) ≤ ((k − 1)!)k−1d(2τd)k. Clearly, for 
� = �2, . . . , L2,
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|R2(�)|
|R2(�− 1)| ≤

maxH′∈R2(�−1) b(H ′)
minH∈R2(�) f(H) ≤ d(2τd)k · 2((k − 1)!)k

�(τM)k−1

≤ 2k+1((k − 1)!)kkk−1τd2

nk−1�
≤ 1

2

by the assumption � ≥ �2 = C2τd
2/nk−1 and appropriate choice of constant C2. Now (23)

follows from similar computations to (22).
This finishes the proof of Claim 8. �

4. Proof of Lemma 6

In this section we prove the crucial Lemma 6. In view of Claim 7 it suffices to show 
that

P (ηt+1 = e |R(t) = G) ≥ 1 − ε(
n
k

)
− t

, ∀ e ∈ Kn \G, (29)

for every t ≤ (1 − ε)M − 1 and every admissible G such that

d(τ − δ) ≤ rG(v) ≤ d(τ + δ), v ∈ [n], (30)

where

τ = 1 − t/M and δ =
√
aτ(logn)/d.

In some cases the following simpler bounds (implied by the second inequality in (17)) on 
rG(v) will suffice:

τd/2 + 1 ≤ rG(v) ≤ 2τd, v ∈ [n]. (31)

Since the average of P (ηt+1 = e |R(t) = G) over e ∈ Kn \ G is exactly 1/ 
((

n
k

)
− t

)
, 

there is f ∈ Kn \G such that

P (ηt+1 = f |R(t) = G) ≥ 1(
n
k

)
− t

. (32)

Fix any such f and let e ∈ Kn \ G be arbitrary. We write G ∪ f for an ordered graph 
obtained by appending edge f at the end of G. Setting Rf := RG∪f (n, d) and Re :=
RG∪e(n, d), we have

P (ηt+1 = e |R(t) = G)
P (ηt+1 = f |R(t) = G) = |RG∪e(n, d)|

|RG∪f (n, d)| = |Re|
|Rf |

. (33)

To bound this ratio, we need to appeal to the configuration model for hyper-
graphs. Let MG(n, d) be a random multi-k-graph extension of G to an ordered d-regular 
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multi-k-graph. Namely, MG(n, d) is a sequence of M edges (each of which is a k-element 
multiset of vertices), the first t of which comprise G, while the remaining ones are gen-
erated by taking a random uniform permutation Π of the multiset

{1, . . . , 1, . . . , n, . . . , n}

with multiplicities rG(v), v ∈ [n], and splitting it into consecutive k-tuples.
The number NG of such permutations is a multinomial coefficient:

NG :=
(

k(M − t)
rG(1), . . . , rG(n)

)
= (k(M − t))!∏

v∈[n] rG(v)! .

A loop is an edge with at least one repeated vertex. We say that an extension is simple, 
if all its edges are distinct and not loops.

Since each simple extension of G is given by the same number of permutations (namely 
(k!)M−t), MG(n, d) is uniform over RG(n, d). That is, MG(n, d), conditioned on simplic-
ity, has the same distribution as RG(n, d).

Set

Me = MG∪e(n, d) and Mf = MG∪f (n, d),

for convenience. Noting that G ∪ f has t + 1 edges, we have

P (Mf ∈ Rf ) = |Rf |(k!)M−t−1

NG∪f
=

|Rf |(k!)M−t−1 ∏
v∈[n] rG∪f (v)!

(k(M − t− 1))! ,

and similarly for Me and Re. This yields, after a few cancellations, that

|Re|
|Rf |

=
∏

v∈e\f rG(v)∏
v∈f\e rG(v) · P (Me ∈ Re)

P (Mf ∈ Rf ) . (34)

The ratio of the products in (34) is, by (30), at least

(
τ − δ

τ + δ

)k

≥
(

1 − 2δ
τ

)k

≥ 1 − 2k
√

a logn
τd

≥ 1 − 2k
√

a logn
εd

≥ 1 − ε/2,

where the last inequality holds by (14) with α = 1/3 and C ′ ≥ 3
√

16ak2. On the other 
hand, the ratio of probabilities in (34) will be shown in Claim 9 below to be at least 
1 − ε/2. Consequently, the entire ratio in (34), and thus in (33), will be at least 1 − ε, 
which, in view of (32), will imply (29) and yield the lemma.

Hence, to complete the proof of Lemma 6 it remains to show that the probabilities of 
simplicity P (Me ∈ Re) are asymptotically the same for all e ∈ Kn \ G. Recall that for 
every edge e ∈ Kn \G we write

Me = MG∪e(n, d) and Re = RG∪e(n, d). (35)
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Fig. 3. Obtaining Me from Mf for k = s = 3 by altering the underlying permutation.

Claim 9. If G, e, and f are as above, then, for every e ∈ Kn \G,

P (Me ∈ Re)
P (Mf ∈ Rf ) ≥ 1 − ε/2.

Proof. We start by constructing a coupling of Me and Mf in which they differ in at most 
k + 1 edges (counting in the replacement of f by e at the (t + 1)-th position).

Let f = {u1, . . . , uk} and e = {v1, . . . , vk}. Further, let s = k − |f ∩ e| and suppose 
without loss of generality that {u1, . . . , us} ∩ {v1, . . . , vs} = ∅. Let Πf be a random 
permutation underlying the multi-k-graph Mf . Note that Πf differs from any permuta-
tion Πe underlying Me by having the multiplicities of v1, . . . , vs greater by one, and the 
multiplicities of u1, . . . , us smaller by one than the corresponding multiplicities in Πe.

Let Π∗ be obtained from Πf by replacing, for each i = 1, . . . , s, a copy of vi selected 
uniformly at random by ui. Define M∗ by chopping Π∗ into consecutive k-tuples and 
appending them to G ∪ e (see Fig. 3).

It is easy to see that Π∗ is uniform over all permutations of the multiset

{1, . . . , 1, . . . , n, . . . , n}

with multiplicities rG∪e(v), v ∈ [n]. This means that M∗ has the same distribution as 
Me and thus we will further identify M∗ and Me.

Observe that if we condition Mf on being a simple k-graph H, then Me can be 
equivalently obtained by the following switching: (i) replace edge f by e; (ii) for each 
i = 1, . . . , s, choose, uniformly at random, an edge ei ∈ H \ (G ∪ f) incident to vi and 
replace it by (ei \ {vi}) ∪ {ui} (see Fig. 4). Of course, some of ei’s may coincide. For 
example, if ei1 = · · · = eil , then the effect of the switching is that ei1 is replaced by 
(ei1 \ {vi1 , . . . , vil}) ∪ {ui1 , . . . , uil}.

The crucial idea is that such a switching is unlikely to create loops or multiple edges. 
However, for certain H this might not true. For example, if e ∈ H \ (G ∪ f), then the 
random choice of ei’s in step (ii) is unlikely to destroy e, but in step (i) edge f has 
been deterministically replaced by an additional copy of e, thus creating a double edge. 
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Fig. 4. Obtaining Me from Mf for k = s = 2: only relevant edges are displayed; the ones belonging to 
Mf \ (G ∪ f) are shown as solid lines.

Moreover, if almost every (k− 1)-tuple of vertices extending vi to an edge in H \ (G ∪ f)
also extends ui to an edge in H, then most likely the replacement of vi by ui will create 
a double edge, too. To avoid such and other bad instances, we say that H ∈ Rf is nice
if the following three properties hold:

e /∈ H (36)

max
i=1,...,s

degH\(G∪f)(ui, vi) ≤ �1 + k log2 n, (37)

max
i=1,...,s

codH|G∪f (ui, vi) ≤ �2 + k log2 n, (38)

where �1 = C1τd/n and �2 = C2τd
2/nk−1 are as in Claim 8. Note that Mf , conditioned 

on Mf ∈ Rf , is distributed uniformly over RG∪f (n, d). Since we chose f such that by 
(32) is satisfied, we have that k-graph G ∪f is admissible. Therefore by Claim 8 we have

P (Mf is not nice |Mf ∈ Rf ) ≤ C0τd

nk−1 + 2 · s2−k log2 n

≤ C0d + 2k
nk−1 ≤ ε

4 , (39)

where the last inequality follows by (15) with α = 1 and sufficiently large constant C ′. 
We have

P (Me ∈ Re)
P (Mf ∈ Rf ) ≥ P (Me ∈ Re |Mf ∈ Rf )

≥ P (Me ∈ Re |Mf is nice)P (Mf is nice |Mf ∈ Rf ) . (40)

It suffices to show that

P (Me ∈ Re |Mf is nice) ≥ 1 − ε/4, (41)

since in view of (39) and (41), inequality (40) completes the proof of Claim 9.
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Now we prove (41). Fix a nice k-graph H ∈ Rf and condition on the event Mf = H. 
The event that Me is not simple is contained in the union of the following four events:

E1 = { two of the randomly chosen edges e1, . . . , es coincide },

E2 = { (ei \ vi) ∪ ui is a loop for some i = 1, . . . , s },

E3 = { (ei \ vi) ∪ ui ∈ H for some i = 1, . . . , s },

E4 = { (ei \ vi) ∪ ui = (ej \ vj) ∪ uj for some distinct i and j }.

Event E1 covers all cases when a double edge is created by replacing several vertices in 
the same edge. Creation of multiple edges in other ways is addressed by events E3 and E4.

In what follows we will several times use the fact that

degH\(G∪f)(v) ≥ τd/2 ≥ εd/2, ∀v ∈ [n], (42)

which is immediate from (31) and τ ≥ ε. To bound the probability of E1, observe 
that, given 1 ≤ i < j ≤ s, the number of choices of a coinciding pair ei = ej is 
degH\(G∪f)(vi, vj) ≤ degH\(G∪f)(vi) and the probability that both vi and vj actually 
select a fixed common edge is (degH\(G∪f)(vi) degH\(G∪f)(vj))−1. Therefore using (42)
we obtain

P (E1|Mf = H) ≤
∑

1≤i<j≤s

degH\(G∪f)(vi, vj)
degH\(G∪f)(vi) degH\(G∪f)(vj)

≤
∑

1≤i<j≤s

1
degH\(G∪f)(vj)

≤
2
(
k
2
)

εd
≤ ε

16 , (43)

where the last inequality follows from (14) with α = 1/2 and sufficiently large C ′.
To bound the probability of E2, note that a loop in Me can only be created when for 

some i = 1, . . . , s, the randomly chosen edge ei contains both vi and ui. There are at 
most degH\(G∪f)(ui, vi) such edges. Therefore, by (37) and (42) we get

P (E2 |Mf = H) ≤
s∑

i=1

degH\(G∪f)(ui, vi)
degH\(G∪f)(vi)

≤ 2k(�1 + k log2 n)
τd

≤ 2k�1
τd

+ 2k2 log2 n

εd
= 2kC1

n
+ 2k2 log2 n

εd
≤ ε

16 , (44)

where the last inequality is implied by (14) with α = 1/2, (16) and sufficiently large C ′.
Similarly we bound the probability of E3, the event that for some i we will choose 

ei ∈ H \ (G ∪ f) with (ei \ vi) ∪ui ∈ H. There are codH|G∪f (ui, vi) such edges. Thus, by 
(38) and (42) we obtain
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P (E3 |Mf = H) ≤
s∑

i=1

codH|G∪f (ui, vi)
degH\(G∪f)(vi)

≤ 2k(�2 + k log2 n)
τd

≤ 2k�2
τd

+ 2k2 log2 n

τd
≤ 2kC2d

nk−1 + 2k2 log2 n

εd
≤ ε

16
, (45)

where the last inequality follows from (14) with α = 1/2, (15) with α = 1 and sufficiently 
large C ′.

Finally, note that, given 1 ≤ i < j ≤ s, if a pair ei, ej ∈ H \ (G ∪ f) satisfies the 
condition in E4, then uj ∈ ei \ vi and ej = (ei \ {vi, uj}) ∪{vj , ui}. This means that ej is 
uniquely determined by ei, ui, uj , vi, and vj . Therefore the number of such pairs ei, ej
is at most degH\(G∪f)(vi, uj) ≤ degH\(G∪f)(vi) and we get exactly the same bound as 
in (43):

P (E4 |Mf = H) ≤
∑

1≤i<j≤s

degH\(G∪f)(vi, uj)
degH\(G∪f)(vi) degH\(G∪f)(vj)

≤
∑

1≤i<j≤s

1
degH\(G∪f)(vj)

≤ ε

16 . (46)

Combining (43)–(46) and averaging over nice H, we obtain (41), as required. �
5. Concluding remarks

Theorem 1 remains valid if we replace the random hypergraph G(k)(n, m) by G(k)(n, p)
with p = (1 − 2γ)d/

(
n−1
k−1

)
, say. To see this one can modify the proof of Theorem 1 as 

follows. Let Bn ∼ Bin(
(
n
k

)
, p) be a random variable independent of the process (G(t))t. 

If Bn ≤ m ≤ |S|, sample G(k)(n, p) by taking the first Bn edges of S (which are uni-
formly distributed over all k-graphs with Bn edges). Otherwise sample G(k)(n, p) among 
k-graphs with Bn edges independently. In view of the assumption (3), Chernoff’s in-
equality (see [9, (2.5)]) and (13) imply

P

(
G

(k)(n, p) �⊂ R
(k)(n, d)

)
≤ P (Bn > m) + P (|S| < m) → 0, as n → ∞.

The lower bound on d in Theorem 1 is necessary because the second moment method 
applied to G(k)(n, p) (cf. Theorem 3.1(ii) in [2]) and asymptotic equivalence of G(k)(n, p)
and G(k)(n, m) yields that for d = o(logn) and m ∼ cM there is a sequence Δ =
Δ(n) � d such that the maximum degree G(k)(n, m) is at least Δ a.a.s.

In view of the above, our approach cannot be extended to d = O(logn) in part (i)
of Theorem 5. Nevertheless, we believe (as it was already stated in [7]) that for loose 
Hamilton cycles it suffices to assume that d = Ω(1).

Conjecture 1. For every k ≥ 3 there is a constant dk such that if d ≥ dk, then a.a.s. 
R

(k)(n, d) contains a loose Hamilton cycle.
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We also believe that the lower bounds on d in parts (ii) and (iii) of Theorem 5 are of 
optimal order.

Conjecture 2. For all integers k > � ≥ 2 if d � n�−1, then a.a.s. R(k)(n, d) is not 
�-Hamiltonian.
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