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For given integers k and r, the Folkman number f(k;r) is the smallest number of vertices
in a graph G which contains no clique on k+1 vertices, yet for every partition of its edges
into r parts, some part contains a clique of order k. The existence (finiteness) of Folkman
numbers was established by Folkman (1970) for r=2 and by Nešetřil and Rödl (1976) for
arbitrary r, but these proofs led to very weak upper bounds on f(k;r).

Recently, Conlon and Gowers and independently the authors obtained a doubly expo-
nential bound on f(k;2). Here, we establish a further improvement by showing an upper
bound on f(k;r) which is exponential in a polynomial of k and r. This is comparable to
the known lower bound 2Ω(rk). Our proof relies on a recent result of Saxton and Thoma-
son (or, alternatively, on a recent result of Balogh, Morris, and Samotij) from which we
deduce a quantitative version of Ramsey’s theorem in random graphs.

1. Introduction

For two graphs, G and F , and an integer r≥ 2 we write G→ (F )r if every
r-coloring of the edges of G results in a monochromatic copy of F . By a
copy we mean here a subgraph of G isomorphic to F . Let Kk stand for the
complete graph on k vertices and let R(k;r) be the r-color Ramsey number,
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that is, the smallest integer n such that Kn→(Kk)r. As it is customary, we
suppress r=2 and write R(k) :=R(k;2) as well as G→F for G→(F )2.

In 1967 Erdős and Hajnal [8] asked if for some l, k+1≤ l <R(k), there
exists a graph G such that G→Kk and G 6⊃Kl. Graham [12] answered this
question in positive for k=3 and l=6 (with a graph on eight vertices), and
Pósa (unpublished) for k= 3 and l= 5. Folkman [10] proved, by an explicit
construction, that such a graph exists for every k≥3 and l=k+1. He also
raised the question to extend his result for more than two colors, since his
construction was bound to two colors.

For integers k and r, a graph G is called (k;r)-Folkman if G→(Kk)r and
G 6⊃Kk+1. We define the r-color Folkman number for Kk by

f(k; r) = min{n ∈ N : ∃ G such that |V (G)| = n and G is (k; r)-Folkman}.
For r = 2 we set f(k) := f(k;2). It follows from [10] that f(k) is well de-
fined for every integer k, i.e., f(k)<∞. This was extended by Nešetřil and
Rödl [17], who showed that f(k;r)<∞ for an arbitrary number of colors r.

Already the determination of f(3) is a difficult, open problem. In 1975,
Erdős [7] offered max(100 dollars, 300 Swiss francs) for a proof or disproof
of f(3)<1010. For the history of improvements of this bound see [5], where a
computer assisted construction is given yielding f(3)<1000. For general k,
the only previously known upper bounds on f(k) come from the constructive
proofs in [10] and [17]. However, these bounds are tower functions of height
polynomial in k. On the other hand, since f(k)≥R(k), it follows by the well

known lower bound on the Ramsey number that f(k)≥2k/2, which for k=3
was improved to f(3)≥19 [19].

We prove an upper bound on f(k;r) which is exponential in a polynomial
of k and r. Set R :=R(k;r) for the r-color Ramsey number forKk. It is known
that there exists some c>0 such that for every r≥2 and k≥3 we have

2crk < R < rrk.

The upper bound already appeared in the work of Skolem [25]. The lower
bound obtained from a random r-coloring of the complete graphs is of the
form rk/2. However, Lefmann [14] noted that the simple inequality R(k;s+

t)≥(R(k;s)−1)(R(k; t)−1)+1 yields a lower bound of the form 2kr/4. Using
iteratively random 3-colorings in this “product-type” construction yields a
slightly better lower bound of the form 3rk/6. Our main result establishes an
upper bound on the Folkman number f(k;r) of similar order of magnitude.

Theorem 1. For all integers r≥2 and k≥3,

f(k; r) ≤ k400k4R40k2 ≤ 2c(k
4 log k+k3r log r),

for some c>0 independent of r and k.
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To prove Theorem 1, we consider a random graph G(n,p), p=Cn
− 2
k+1 ,

where n=n(k,r) and C =C(n,k,r) and carefully estimate from below the
probabilities P(G(n,p)→ (Kk)r) and P(G(n,p) 6⊃Kk+1), so that their sum
is strictly greater than 1. The latter probability is easily bounded by the
FKG inequality. However, to set a bound on P(G(n,p)→ (Kk)r) we rely on
a recent general result of Saxton and Thomason [24], elaborating on ideas
of Nenadov and Steger [15] (see Remark 3).

Remark 1. Instead of the Saxton-Thomason theorem, we could have used
a concurrent result of Balogh, Morris, and Samotij [1], which, by using our
method, yields only a slightly worse upper bound on the Folkman numbers
f(k;r) than Theorem 1 (the k4 in the exponent has to be replaced k6).

Remark 2. In a related paper [23], we combined ideas from [9,20,22] and,
for r = 2, obtained another proof of the Ramsey threshold theorem that
yields a self-contained derivation of a double-exponential bound for the two-
color Folkman numbers f(k). Independently, a similar double-exponential
bound for f(k;r), for r ≥ 2, was obtained by Conlon and Gowers [2] by a
different method.

Motivated by the original question of Erdős and Hajnal, one can also
define, for r=2, k≥3, and k+1≤ l≤R(k), a relaxed Folkman number as

f(k, l) = min{n : ∃ G such that |V (G)| = n, G→ Kk and G 6⊃ Kl}.

Note that f(k,k+1)=f(k). As mentioned above, Graham [12] found out that
f(3,6) = 8, while Nenov [16] and Piwakowski, Radziszowski and Urbański
[18] determined that f(3,5)=15 (see also [26]).

Of course, the problem is easier when the difference l−k is bigger. Our
final result provides an exponential bound of the form f(k, l)≤ exp{−ck},
when l is close to but bigger than 4k (the constant c is proportional to the
reciprocal of the difference between l/k and 4).

Theorem 2. For every 0 < α < 1
4 there exists k0 such that for k and l

satisfying k≥k0 and k≤αl,

f(k; l) ≤ 24k/(1−4α).

It would be interesting to decide if the true order of the logarithm of
f(k,k+1)=f(k) is also linear in k.

The paper is organized as follows. In the next section we prove our main
result, Theorem 1, while Theorem 2 is proved in Section 3. Finally, a short
Section 4 offers a brief discussion of the analogous problem for hypergraphs.
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Most logarithms in this paper are binary and are denoted by log. Only
occasionally, when citing a result from [24] (Theorem 5 in Section 2 below),
we will use the natural logarithms, denoted by ln.

Acknowledgments. We are very grateful to both referees for their valuable
remarks which have led to a better presentation of our results. We would
also like to thank József Balogh, David Conlon, Andrzej Dudek, Hiê.p Hàn,
Wojciech Samotij, Angelika Steger, and Andrew Thomason for their helpful
comments and relevant information. Finally, we are truly indebted to Troy
Retter for his careful reading of the manuscript.

2. Proof of Theorem 1

We will prove Theorem 1 by the probabilistic method. Let G(n,p) be the
binomial random graph, where each of the

(
n
2

)
possible edges is present,

independently, with probability p. We are going to show that for every n≥
k40k

4
R10k2 and a suitable function p=p(n), with positive probability, G(n,p)

has simultaneously two properties: G(n,p)→ (Kk)r and G(n,p) 6⊃Kk+1. Of
course, this will imply that there exists a (k;r)-Folkman graph on n vertices.
We begin with a simple lower bound on P(G(n,p) 6⊃Kk+1).

Lemma 3. For all k,n≥3, and C>0, if p=Cn−2/(k+1)≤ 1
2 , then

P(G(n, p) 6⊃ Kk+1) > exp(−C(k+1
2 )n).

Proof. By applying the FKG inequality (see, e.g., [13, Theorem 2.12 and
Corollary 2.13]), we obtain the bound

P(G(n, p) 6⊃ Kk+1) ≥
(

1− p(
k+1
2 )
)( n

k+1)

≥ exp
(
−2C(k+1

2 )n−k
(
n
k+1

))
> exp

(
−C(k+1

2 )n
)
,

where we also used the inequalities
(
n
k+1

)
< nk+1/2 and 1− x ≥ e−2x for

0<x< 1
2 .

The main ingredient of the proof of Theorem 1 traces back to a theorem
from [20] establishing edge probability thresholds for Ramsey properties of
G(n,p). A special case of that result states that for all integers k ≥ 3 and

r ≥ 2 there exists a constant C such that if p = p(n) ≥ Cn
− 2
k+1 , then

limn→∞P(G(n,p)→(Kk)r)=1.
Adapting an idea of Nenadov and Steger [15] (see Remark 3 for more on

that), and based on a result of Saxton and Thomason [24], we obtain the
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following quantitative version of the above random graph theorem. Recall
our notation R=R(k;r) for the r-color Ramsey number and notice an easy
lower bound

(1) R(k; r) > 2r

valid for all r≥2 and k≥3 (just consider a factorization of K2r).

Lemma 4. For all integers r≥2, k≥3, and

(2) n ≥ k400k4R40k2 ,

the following holds. Set

(3) b =
1

2R2
, C = 25

√
logn log kR16, and p = Cn−

2
k+1 .

Then
P(G(n, p)→ (Kk)r) ≥ 1− exp

(
−bp

(
n
2

))
.

We devote the next two subsections to the proof of Lemma 4. Now, we
deduce Theorem 1 from Lemmas 3 and 4.

Proof of Theorem 1. For given r and k, let n be as in (2), and let b,C,
and p be as in (3). Below we will show that these parameters satisfy not only
the assumptions of Lemma 4, but also the assumption p≤ 1

2 of Lemma 3, as
well as an additional inequality

(4) n ≥ (3/b)
k+1
k−1 C(k+2

2 ).

With these two inequalities at hand, we may quickly finish the proof of
Theorem 1. Indeed, (4) implies that

(5) bp

(
n

2

)
≥ 1

3
bpn2 = (b/3)Cn1+

k−1
k+1

(4)

≥ C(k+1
2 )n,

which, by Lemma 3, implies in turn that

P(G(n, p) 6⊃ Kk+1) > exp
(
−bp

(
n
2

))
.

Since, by Lemma 4,

P(G(n, p)→ (Kk)r) ≥ 1− exp
(
−bp

(
n
2

))
,

we conclude that

P(G(n, p)→ (Kk)r and G(n, p) 6⊃ Kk+1) > 0.
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Thus, there exists a (k;r)-Folkman graph on n vertices, and thus, f(k) ≤
k400k

4
R40k2 .

It remains to show that p≤ 1
2 and that (4) holds. The first inequality is

equivalent to

(6) n ≥ (2C)
k+1
2 .

We will now show that this inequality is a consequence of (4) and then

establish (4) itself. Since C>2 and 3/b
(3)
= 6R2≥1, we infer that

(3/b)
k+1
k−1 C(k+2

2 ) ≥ C(k+2
2 ) ≥ (2C)

k+1
2 ,

and hence, (6) indeed follows from (4).

Finally, we establish (4). In doing so we will use again the identity 3/b
(3)
=

6R2, as well as the inequalities 36 ≤ C, which follows from (2) and (3),(
k+2
2

)
≤k2+1≤2k2−1, and k+1

k−1≤2, valid for all k≥3. The R-H-S of (4) can
be bounded from above by

(6R2)
k+1
k−1C(k+2

2 ) ≤ 36R4C(k+2
2 ) ≤ R4Ck

2+2 ≤ 210k
2
√
logn log kR20k2 .

Hence, it suffices to show that

(7) n ≥ 210k
2
√
logn log kR20k2 .

Observe that, by (2), 1
2 logn≥20k2 logR, and thus, it remains to check that

1

2
log n ≥ 10k2

√
log n log k,

or equivalently that
log n ≥ 400k4 log k.

This, however, follows trivially from (2).

2.1. The proof of Lemma 4 – preparations

In this and the next subsection we present a proof of Lemma 4, which is
inspired by the work of Nenadov and Steger [15] and is based on a recent gen-
eral result of Saxton and Thomason [24] on the distribution of independent
sets in hypergraphs. For a hypergraph H, a subset I⊆V (H) is independent
if the subhypergraph H[I] induced by I in H has no edges.

For an h-graph H, the degree d(J) of a set J ⊂ V (H) is the number
of edges of H containing J . (Since in our paper letter r is reserved for the
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number of colors, we will use h for hypergraph uniformity.) We will write
d(v) for d({v}), the ordinary vertex degree. We further define, for a vertex
v∈V (H) and j=2, . . . ,h, the maximum j-degree of v as

dj(v) = max

{
d(J) : v ∈ J ⊂

(
V (H)

j

)}
.

Finally, the co-degree function of H with a formal variable τ is defined
in [24] as

(8) δ(H, τ) =
2(h2)−1

nd

h∑
j=2

∑
v dj(v)

2(j−1
2 )τ j−1

,

where the inner sum is taken over all vertices v∈V (H) and d is the average
vertex degree in H, that is, d= 1

n

∑
v d(v).

Theorem 5 below is an abridged version of [24, Corollary 3.6], where we
suppress part of conclusion (a) (about the sets Ti), as well as the “Moreover”
part therein, since we do not use this additional information here. In part
(c) of the theorem below, for convenience, we switch from ln to log, but only
on the R-H-S of the upper bound on ln |C|.

Theorem 5 (Saxton & Thomason, [24]). LetH be an h-graph on vertex
set [n] and let ε and τ be two real numbers such that 0<ε<1/2,

τ ≤ 1/(144(h!)2h) and δ(H, τ) ≤ ε/(12(h!)).

Then there exists a collection C of subsets of [n] such that the following three
properties hold.

(a) For every independent set I in H there exists a set C ∈ C such that
I⊂C.

(b) For all C∈C, we have e(H[C])≤εe(H).
(c) ln |C|≤c log(1/ε)τ log(1/τ)n, where c=800(h!)3h.

We will now tailor the above result to our application. The hypergraphs
we consider have a very symmetric structure. Given k and n, let H(n,k) be

the hypergraph with vertex set
(
[n]
2

)
, the edges of which correspond to all

copies of Kk in the Kn with vertex set [n]. Thus, H(n,k) has
(
n
2

)
vertices,(

n
k

)
edges, and is

(
k
2

)
-uniform and

(
n−2
k−2
)
-regular.

For J ⊆
(
[n]
2

)
, the degree of J in H(n,k) is d(J) =

(
n−vJ
k−vJ

)
, where vJ is

the number of vertices in J treated as a graph on [n] rather than a subset
of vertices of H(n,k). Thus, over all J with |J |= j, d(J) is maximized by
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the smallest possible value of vJ , that is, when vJ = lj , the smallest integer

l such that j≤
(
l
2

)
. Consequently, for every vertex v of H(n,k) (that is, an

edge of Kn on [n]) and for each j=2, . . . ,
(
k
2

)
, we have

dj(v) =

(
n− lj
k − lj

)
.

Clearly, lj≥3 for j≥2, which will be used later.
Let

δ(n, k, τ) :=

(k2)∑
j=2

2k
4
kk−2

τ j−1nlj−2
.

The co-degree function of H(n,k) can be bounded by δ(n,k,τ).

Claim 6.
δ(H(n, k), τ) ≤ δ(n, k, τ).

Proof. By the definition of δ(H,τ) in (8) with h replaced by
(
k
2

)
, n by

(
n
2

)
, d

by
(
n−2
k−2
)
, dj(v) by

(n−lj
k−lj

)
, and with 2(j−1

2 ) dropped out from the denominator,

we have

δ(H(n, k), τ) ≤ 2k
4

(k2)∑
j=2

(n−lj
k−lj

)
τ j−1

(
n−2
k−2
) .

Now, observe that
(n−lj
k−lj

)

(n−2
k−2)
≤(k/n)lj−2 and lj≤k.

The most important property of hypergraph H(n,k) is that a subset S of
the vertices of H corresponds to a graph G with vertex set [n] and edge set
S, and S is an independent set in H(n,k) if and only if the corresponding
graph G is Kk-free. We now apply Theorem 5 to H(n,k).

Corollary 7. Let k ≥ 3, n≥ 3, and let ε and τ be two real numbers such
that 0<ε<1/2,

(9) τ ≤
(
k2!
)−2

and δ(n, k, τ) ≤ ε

k2!
.

Then there exists a collection C of subgraphs of Kn such that the following
three properties hold.

(a) For every Kk-free graph G⊆Kn there exists a graph C ∈ C such that
G⊂C.

(b) For all C∈C, C contains at most ε
(
n
k

)
copies of Kk.

(c) ln |C|≤(2k2)! log(1/ε)τ log(1/τ)
(
n
2

)
.
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Proof. Note that for k≥3,

k2! > 12
(
k
2

)
! and, consequently, (k2!)2 > 144

(
k
2

)
!
(
k
2

)
,

and that, by Claim 6, δ(H(n,k), τ) ≤ δ(n,k,τ). Thus, the assumptions of

Theorem 5 hold for H := H(n,k) with h =
(
k
2

)
, and its conclusions (a-

c) translate into the corresponding properties (a-c) of Corollary 7. Finally,
notice that

(2k2)! > c = 864
((

k
2

)
!
)3 (

k
2

)
.

In the next subsection we deduce Lemma 4 from Corollary 7. First, how-
ever, we make a simple observation about the number of monochromatic
copies of Kk in every coloring of Kn. Recall that R=R(k;r) is the r-color
Ramsey number for Kk and set

(10) α =

(
R

k

)−1
.

Proposition 8. Let n ≥ R. For every (r+ 1)-coloring of the edges of Kn

either there are more than α
2

(
n
k

)
monochromatic copies of Kk colored by the

first r colors, or more than 1
R2

(
n
2

)
edges receive color r+1.

Proof. Consider an (r+ 1)-coloring of the edges of Kn. Let x
(
n
R

)
be the

number of the R-element subsets of the vertices of Kn with no edge colored
by color r+1. By the definition of R, each of these subsets induces in Kn a
monochromatic copy of Kk. Thus, counting repetitions, there are at least

x

(
n
R

)(
n−k
R−k

) = x

(
n
k

)(
R
k

) = xα

(
n

k

)
monochromatic copies of Kk colored by one of the first r colors. Suppose
that their number is at most

α

2

(
n

k

)
.

Then x≤ 1
2 , that is, at least a half of the R-element subsets of V (Kn) contain

at least one edge colored by r+1. Hence, color r+1 appears on at least

1
2

(
n
R

)(
n−2
R−2
) =

1
2

(
n
2

)(
R
2

) >
1

R2

(
n

2

)
edges of Kn. This completes the proof.
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2.2. Proof of Lemma 4 – details

Let r≥2, k≥3, and let n,b,C, and p be as in Lemma 4, see (3) and (2). We
have to show that

P(G(n, p)→ (Kk)r) ≥ 1− exp(−bp
(
n
2

)
).

First we set up a few auxiliary constants required for the application of
Corollary 7. Recalling that α is defined in (10), let

(11) ε =
α

2r
,

(12) C0 = 24
√
lognR10/k, and τ = C0n

− 2
k+1 .

We will now prove that the above defined constants ε and τ satisfy the
assumptions of Corollary 7.

Claim 9. Inequalities (9) hold true for every k≥3.

Proof. In order to verify the first inequality in (9), note that by the defini-
tions of τ and C0 in (12) and the obvious bound x!<xx,

(13) (k2!)2τ ≤ k4k224
√
lognR10/kn−

2
k+1 .

It remains to show that the R-H-S of (13) is smaller than one, or, by taking
logarithms, that

4k2 log k + 4
√

log n+
10

k
logR <

2

k + 1
log n.

This, however, follows from

4
√

log n <
1

k + 1
log n,

or equivalently,
16(k + 1)2 < log n,

and from

4k2(k + 1) log k +
10

k
(k + 1) logR < log n,

both of which are true by the lower bound on n in (2).

To prove the second inequality in (9), note that since τ ≤1 and j≤
(lj
2

)
,

the quantity τ j−1nlj−2 is minimized when j=
(lj
2

)
. Thus, we have

(14)
τ j−1 · nlj−2 ≥ τ(lj

2
)−1 · nlj−2 = C

(lj
2
)−1

0 n−
(lj−2)(lj+1)

k+1
+lj−2

= C
(lj
2
)−1

0 n
(lj−2)(k−lj)

k+1 .
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Recall that for j≥2 we have lj≥3. In what follows we obtain a lower bound
on the R-H-S of (14) by distinguishing two cases: lj<k and lj =k. If lj<k,
then (lj−2)(k−lj) is minimized for lj =3 and lj =k−1 and owing to C0>1
we infer

τ j−1 · nlj−2
(14)

≥ C
(lj
2
)−1

0 n
(lj−2)(k−lj)

k+1 > n
k−3
k+1

(2)

≥ k80k
4
R8k2 ,

where we also used the bound k+1
k−3 ≤ 5 for all k ≥ 4, which holds due to

3≤ lj<k. If, on the other hand, lj =k, then, by the definition of C0 in (12)
and the bound on n in (2),

(15) C0 ≥ 280k
2
R10/k.

Hence, in view of (15), and the fact that
(
k
2

)
−1≥ 1

5k
2 for k≥3, we have that

τ j−1 · nlj−2
(14)

≥ C
(k2)−1
0 ≥

(
280k

2
R10/k

)k2/5
= 216k

4
R2k.

Consequently, using the trivial bounds kk · k2! < 215k
4
,
(
R
k

)
< Rk, and

Rk
(1)
> 2r, we conclude that

(k2)∑
j=2

2k
4
kk−2

τ j−1nlj−2
≤

(k2)∑
j=2

2k
4
kk−2

216k4R2k
≤ kk

215k4R2k
≤ 1

2r
(
R
k

)
· k2!

(10),(11)
=

ε

k2!
,

which concludes this proof.

In view of Claim 9, the conclusions of Corollary 7 hold true with ε and
τ defined in, resp., (11) and (12). That is, there exists a collection C of
subgraphs of Kn such that Properties (a), (b), and (c) of Corollary 7 are
satisfied for these specific values of ε and τ .

To continue with the proof of Lemma 4 consider a random graph G(n,p)
and let E be the event that G(n,p) 6→(Kk)r. For each G∈E , there exists an
r-coloring ϕ : E(G)→ [r] yielding no monochromatic copy of Kk. (Further on
we will call such a coloring proper.) In other words, there are Kk-free graphs
G1, . . . ,Gr, defined by Gi=ϕ−1(i), such that G1 ·∪ . . . ·∪Gr=G. According to
Property (a) of Corollary 7, for every i∈ [r] there exists a graph Ci∈C such
that Gi⊆Ci. Consequently,

G ∩

(
Kn \

r⋃
i=1

Ci

)
= ∅.

Notice that there are only at most |C|r distinct graphs Kn\
⋃r
i=1Ci. More-

over, we next show that all these graphs are dense (see Claim 10). Hence,
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as it is extremely unlikely for a random graph G(n,p) to be completely dis-
joint from one of the few given dense graphs, it will ultimately follow that
P(E)=o(1).

Claim 10. For all C1, . . . ,Cr∈C,∣∣∣∣∣Kn \
r⋃
i=1

Ci

∣∣∣∣∣ ≥
(
n

2

)
/R2.

Proof. The graphs Ci, i∈ [r], together with Kn \
⋃r
i=1Ci, form an (r+1)-

coloring of Kn, more precisely, an (r+1)-coloring where, for each i=1, . . . , r,
the edges of color i are contained in Ci, while all edges of Kn \

⋃r
i=1Ci are

colored with color r+ 1. (Note that this coloring may not be unique, as
the graphs Ci are not necessarily mutually disjoint.) By Proposition 8, this
(r+1)-coloring yields either more than (α/2)

(
n
k

)
monochromatic copies of Kk

in the first r colors or more than
(
n
2

)
/R2 edges in the last color. Since for

each i∈ [r], the i-th color class is contained in Ci, it follows from Property (b)
that there are at most

r · ε
(
n

k

)
(11)
=

α

2

(
n

k

)
monochromatic copies of Kk in the first r colors. Consequently, we must
have

(16)

∣∣∣∣∣Kn \
r⋃
i=1

Ci

∣∣∣∣∣ > 1

R2

(
n

2

)
,

which concludes the proof.

Based on Claim 10 we can now bound P(E) = P(G(n,p) 6→ (Ks)r) from
above.

Claim 11.

P(G(n, p) 6→ (Ks)r) ≤ |C|r exp

{
−
p
(
n
2

)
R2

}

Proof. Let F be the event that G(n,p)∩ (Kn \
⋃r
i=1Ci) = ∅ for at least

one r-tuple of graphs Ci ∈ C, i= 1, . . . , r. We have E ⊆ F . Indeed, if G ∈ E
then there is a proper coloring ϕ of G and graphs C1, . . . ,Cr ∈ C such that
G⊆

⋃r
i=1Ci and, by Claim 10, Kn \

⋃r
i=1Ci has at least 1

R2

(
n
2

)
edges and is

disjoint from G. Thus, G∈F . Consequently,

P(G(n, p) 6→ (Kk)r) ≤ P(F).
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To estimate P(F) we write F=
⋃
F(C1, . . . ,Cr), where the summation runs

over all collections (C1, . . . ,Cr) with Ci ∈ C, i = 1, . . . , r, and the event
F(C1, . . . ,Cr) means that G(n,p)∩(Kn \

⋃r
i=1Ci)=∅. Clearly,

P(F(C1, . . . , Cr)) = (1− p)|Kn\
⋃r
i=1 Ci| ≤ (1− p)(

n
2)/R

2
,

where the last inequality follows by Claim 10. Finally, applying the union
bound, we have

P(G(n, p) 6→ (Ks)r) ≤ P(F) ≤ |C|r(1− p)(
n
2)/R

2 ≤ |C|r exp

{
−
p
(
n
2

)
R2

}
.

Observe that by Property (c) of Corollary 7,

(17) |C|r ≤ exp

{
r(2k2)! log(1/ε)τ log(1/τ)

(
n

2

)}
.

In view of Claim 11 and inequality (17), to complete the proof of Lemma
4, it suffices to show that

r(2k2)! log(1/ε)τ log(1/τ)

(
n

2

)
≤
p
(
n
2

)
2R2

,

or, equivalently, after applying the definitions of p and τ ((3) and (12), resp.)

and dividing sidewise by n
− 2
k+1
(
n
2

)
, that

(18) r(2k2)! log(1/ε)C0 log(1/τ) ≤ C/(2R2).

To this end, observe that, since C0≥1 and, by (1), R>2r, we have

log(1/τ)
(12)

≤ 2
k+1 log n

and

log(1/ε)
(11)
= log(2r

(
R
k

)
) ≤ (k + 1) logR.

Hence, the L-H-S of (18) can be upper bounded by 2r(2k2)!C0 logR logn.

Consequently, using also the bounds (2k2)!< (2k)4k
2

and, again, R>2r, we
realize that (18) will follow from

(19) 2R3 logR · (2k)4k
2

log n ≤ C/C0.

On the other hand,

C/C0
(3),(12)

= 25
√
logn log k−4

√
lognR16−10/k ≥ 2

√
logn log k+4

√
logn(

√
log k−1)R12.
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Thus, (19) is an immediate consequence of the following two inequalities,
which are themselves easy consequences of (2):

2
√
logn log k

(2)

≥ 220k
2 log k ≥ (2k)4k

2

and

24
√
logn(

√
log k−1) > 2

√
logn ≥ log n.

For the latter inequality we first used k ≥ 3 and
√

log3> 5
4 , and then the

fact that 2
√
x≥x for all x≥16, which can be easily verified by checking the

first derivative (note that by (2), logn ≥ 16). This completes the proof of
Lemma 4.

Remark 3. The idea of utilizing hypergraph containers for Ramsey prop-
erties of random graphs comes from a recent paper by Nenadov and Steger
[15] (see also [11], Ch. 7) where the authors give a short proof of the main
theorem from [20] establishing an edge probability threshold for the prop-
erty G(n,p)→(F )r. Let us point to some similarities and differences between
their and our approach. For clarity of the comparison, let us restrict our-
selves to the case F =Kk considered in our paper (the generalization to an
arbitrary graph F is quite straightforward).

In [15] the goal is to prove an asymptotic result with n → ∞ and all
other parameters fixed. Consequently, they do not optimize, or even specify
constants. Our task is to provide as good as possible upper bound on n in
terms of k and r, so there is no asymptotics.

The observation that a Kk-free coloring of the edges of G(n,p) yields r
independent sets in the hypergraph H(n,k), and therefore, by the Saxton-
Thomason Theorem there are r graphs Ci, i=1, . . . , r, each with only a few
copies of Kk, whose union contains all the edges of G(n,p), was made in [15].
Also there one can find a statement similar to our Proposition 8 (Corollary
3 in [15].) These two facts lead to similar estimates of the probability that
G(n,p) is not Ramsey. However, Nenadov and Steger, assuming that C is
a constant, are forced to use Theorem 2.3 from [24] which involves the se-
quences of sets Ti. In our setting, we choose C =C(n) in a balanced way,
allowing us to go through with the estimates of P(G(n,p) 6→(Kk)r) without
introducing the Ti’s, while, on the other hand, keeping the upper bound
on n exponential in k. In fact, as observed by Conlon and Gowers [2], the
approach via random graphs cannot yield a better than double-exponential
upper bound on n if one assumes that p is at the Ramsey threshold, i.e., if
C is a constant.
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3. Relaxed Folkman numbers

In this section we prove Theorem 2. We will need an elementary fact about
Ramsey properties of quasi-random graphs. For constants % and d with 0<
d,% ≤ 1, we say that an n-vertex graph Γ is (%,d)-dense if every induced
subgraph on m≥ %n vertices contains at least d(m2/2) edges. It follows by
an easy averaging argument that it suffices to check the above inequality
only for m= d%ne. Note also that every induced subgraph of a (%,d)-dense
n-vertex graph on at least cn vertices is (%c ,d)-dense.

It turns out that for a suitable choice of the parameters, (%,d)-dense
graphs are Ramsey.

Proposition 12. For every k ≥ 2 and every d ∈ (0,1), if n ≥ (2/d)2k−4

and 0<%≤ (d/2)2k−4, then every two-colored n-vertex (%,d)-dense graph Γ
contains a monochromatic copy of Kk.

Proof. For a two-coloring of the edges of a graph Γ we call a sequence of
vertices (v1, . . . ,vl) canonical if for each i= 1, . . . , l−1 all the edges {vi,vj},
for j>i, are of the same color.

We will first show by induction on l that for every l≥ 2 and d ∈ (0,1),
if n≥ (2/d)l−2 and 0<%≤ (d/2)l−2, then every two-colored n-vertex (%,d)-
dense graph Γ contains a canonical sequence of length l.

For l=2, every ordered pair of adjacent vertices is a canonical sequence.
Assume that the statement is true for some l≥ 2 and consider an n-vertex
(%,d)-dense graph Γ , where % ≤ (d/2)l−1 and n ≥ (2/d)l−1. As observed
above, there is a vertex u with degree at least dn. Let Mu be a set of at
least dn/2 neighbors of u connected to u by edges of the same color. Let
Γu=Γ [Mu] be the subgraph of Γ induced by the set Mu. Note that Γu has
nu≥dn/2≥(2/d)l−2 vertices and is (%u,d)-dense with %u≤(d/2)l−2. Hence,
by the induction assumption, there is a canonical sequence of length l in Γu.
This sequences preceded by the vertex u makes a canonical sequence of
length l+1 in Γ .

To complete the proof of Proposition 12, set l=2k−2 above and observe
that every canonical sequence (v1, . . . ,v2k−2) contains a monochromatic copy
of Kk. Indeed, among the vertices v1, . . . ,v2k−3, some k− 1 have the same
color on all the “forward” edges. These vertices together with vertex v2k−2
form a monochromatic copy of Kk.

Proof of Theorem 2. Let n=24k/(1−4α). Consider a random graph G(n,p)
where

p = 2n−
7+4α
16k = 2

− 20α+3
4(1−4α) .

By elementary estimates one can bound the expected number of l-cliques in
G(n,p) by (en

l
p
l−1
2

)l
.
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Thus, if

l − 1

2
≥ log n

log(1/p)
=

16k

20α+ 3
,

then, as k→∞, a.a.s. there are no l-cliques in G(n,p). By assumption,

l − 1

2
≥ k − α

2α
≥ 16k

20α+ 3
,

where the last inequality, equivalent to (3− 12α)k ≥ 20α2 + 3α, holds if
k≥ 2

3(1−4α) (we used here the assumption that α< 1
4).

Further, by a straightforward application of Chernoff’s bound (see,

e.g., [13, ineq. (2.6)]), a.a.s. G(n,p) is (%,p− o(p))-dense, where % = log2n
n ,

say. Indeed, setting t= %n= log2n, ε= ε(n) = (logn)−1/3, and d= (1− ε)p,
the probability that a fixed set T of t vertices spans in G(n,p) fewer than
dt2/2 edges is at most

P(e(T ) ≤ (1− ε)pt2/2) ≤ P
(
e(T ) ≤ (1− ε/2)p

(
t

2

))
≤ exp

{
−ε

2

8
p

(
t

2

)}
≤ exp

{
− ε

2

24
pt2
}
.

Finally, note that the above bound, even multiplied by
(
n
t

)
, the number of

all t-element subsets of vertices in G(n,p), still converges to zero (recall that
p is a constant).

Using that εk=O(log2/3n) one can easily verify that both assumptions of
Proposition 12, that is, n≥ (2/d)2k−4 and %≤ (d/2)2k−4, hold true. Indeed,
dropping the subtrahend 4 for simplicity,

(d/2)2k = (1− ε)2kn−1+δ ≥ % ≥ 1

n
,

for n large enough, that is, for k large enough.
In conclusion, a.a.s. G(n,p) is such that

• it contains no Kl, and
• for every two-coloring of its edges, there is a monochromatic copy of Kk.

Hence, there exists an n-vertex graph with the above two properties and,
consequently, f(k, l)≤n=24k/(1−4α).
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4. Hypergraph Folkman numbers

Hypergraph Folkman numbers are defined in an analogous way to their
graph counterparts. Given three integers h, k, and r, the h-uniform Folk-
man number fh(k;r) is the minimum number of vertices in an h-uniform

hypergraph H such that H→ (K
(h)
k )r but H 6⊃K(h)

k+1. Here K
(h)
k stands for

the complete h-uniform hypergraph on k vertices, that is, one with
(
k
h

)
edges.

The finiteness of hypergraph Folkman numbers was proved by Nešetřil and
Rödl in [17, Colloary 6, page 206] and besides the gigantic upper bound
stemming from their construction, no reasonable bounds have been proven
so far. Much better understood are the vertex-Folkman numbers (where
instead of edges, the vertices are colored), which for both, graphs and hy-
pergraphs, are bounded from above by an almost quadratic function of k,
while from below the bound is only linear in k (see [6,4]).

The study of Ramsey properties of random hypergraphs began in [21]

where a threshold was found for K
(3)
4 , the 3-uniform clique on 4 vertices.

Also there a general conjecture was stated that a theorem analogous to that
in [20] holds for hypergraphs too. This was confirmed for h-partite h-uniform
hypergraphs in [22], and, finally, for all h-uniform hypergraphs in [9] and,
independently, in [3].

As remarked by Nenadov and Steger in [15], the Saxton-Thomason (or
the Balogh-Morris-Samotij) theorem should also yield a much simpler proof
of the hypergraph Ramsey threshold theorem from [9,3]. We believe that,
similarly, our quantitative approach should also provide an upper bound on
the hypergraph Folkman numbers fh(k;r), exponential in a polynomial of k
and r.
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