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Approximate counting of regular hypergraphs
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In this paper we asymptotically count d-regular k-uniform hypergraphs on n vertices,
provided k is fixed and d = d(n) = o(n1/2). In doing so, we extend to hypergraphs a
switching technique of McKay and Wormald.
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1. Introduction

We consider k-uniform hypergraphs (or k-graphs, for
short) on the vertex set V = [n] := {1, . . . ,n}. A k-graph
H = (V , E) is d-regular, if the degree of every vertex v ∈ V ,
degH (v) := deg(v) := |{e ∈ E: v ∈ e}| equals d.

Let H(k)(n,d) be the class of all d-regular k-graphs on
[n]. Note that each H ∈ H(k)(n,d) has m := nd/k edges
(throughout, we implicitly assume that k|nd). We treat d
as a function of n, possibly constant.

A result of McKay [8] contains an asymptotic formula
for the number of n-vertex d-regular graphs, when d � εn
for any constant ε < 2/9. In this paper we present an
asymptotic enumeration of all d-regular k-graphs on a
given set of n vertices, where k � 3 and d = d(n) is ei-

* Corresponding author.
E-mail address: andrzej.dudek@wmich.edu (A. Dudek).

1 Research supported in part by Simons Foundation Grant #244712.
2 Research supported in part by NSF Grant CCF2013110.
3 Research supported by the Polish NSC grant N201 604940 and the

NSF grant DMS-1102086. Part of research performed at Emory University,
Atlanta.

4 Research supported by the Polish NSC grant N201 604940. Part of re-
search performed at Adam Mickiewicz University, Poznań.
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ther a constant or does not grow with n too quickly. Let
κ = κ(k) = 1 for k � 4 and κ(3) = 1/2.

Theorem 1. For every k � 3, 1 � d = o(nκ ), and∣∣H(k)(n,d)
∣∣

= (nd)!
(nd/k)!(k!)nd/k(d!)n

× exp

{
−1

2
(k − 1)(d − 1) + O

(
(d/n)1/2 + d2/n

)}
.

The error term in the exponent tends to zero (thus
giving the asymptotics of |H(k)(n,d)|) if and only if d =
o(n1/2). Cf. an analogous formula for k = 2 by McKay [8],
which gives the asymptotics if and only if d = o(n1/3). Re-
cently, Blinovsky and Greenhill [2] obtained more general
results counting sparse uniform hypergraphs with given
degrees.

Theorem 1 extends a result from [5] where Cooper,
Frieze, Molloy and Reed proved that formula for d fixed
using the by now standard configuration model (see [1,3,
11] for the graph case). Already for graphs, in [8], and
later in [9] and [10], this technique was combined with
the idea of switchings, a sequence of operations on a graph
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which eliminate loops and multiple edges, while keeping
the degrees unchanged and leading to an almost uniform
distribution of the simple graphs obtained as the ultimate
outcome (but see Remark 3 in Section 3).

To prove Theorem 1 we apply these ideas together with
a modification from [4], where instead of configurations,
permutations were used to generate graphs with a given
degree sequence. To describe this modification, consider a
generalization of a k-graph in which edges are multisets of
vertices rather than just sets. By a k-multigraph we mean
a pair H = (V , E) where V is a set and E is a multiset of
k-element multisubsets of V . Thus we allow both multi-
ple edges and loops, a loop being an edge which contains
more than one copy of a vertex. We call an edge proper
if it is not a loop. We say that a k-multigraph is simple
if it is a k-graph, that is, if it contains neither multiple
edges nor loops. Henceforth, for brevity of notation, we
denote an edge of a k-multigraph by v1 . . . vk rather than
{v1, . . . , vk}.

Given a sequence x ∈ [n]ks , s ∈N, let H(x) stand for the
k-multigraph with edge multiset E = {xki+1, . . . , xki+k: i =
0, . . . , s − 1} and let λ(x) be the number of loops in H(x).

Let P = P(n,d) ⊂ [n]nd be the family of all permuta-
tions of the sequence

(1, . . . ,1︸ ︷︷ ︸
d

,2, . . . ,2︸ ︷︷ ︸
d

, . . . ,n, . . . ,n︸ ︷︷ ︸
d

).

Note that |P| = (nd)!(d!)−n . Let Y = (Y1, . . . , Ynd) be cho-
sen uniformly at random from P .

In the next section we sketch a proof of Theorem 1 to-
gether with some auxiliary results.

2. Proof of Theorem 1

2.1. Setup

Let E be the family of those permutations y ∈ P for
which the k-multigraph H(y) has no multiple edges and
contains at most

L := √
nd

loops, but no loops with less than k − 1 distinct vertices.
Let

El = {
y ∈ E: λ(y) = l

}
, l = 0, . . . , L.

Note that

E0 = {
y ∈ P: H(y) ∈ H(k)(n,d)

}
is precisely the family of those permutations from P
which represent simple k-graphs. In turn, for each H ∈
H(k)(n,d) there are (nd/k)!(k!)nd/k permutations y ∈ E0
with H(y) = H . Therefore, in order to prove Theorem 1,
it suffices to show that

|P|/|E0|
= exp

{
1

2
(k − 1)(d − 1) + O

(√
d/n + d2/n

)}
. (1)

Our plan is as follows. First, in Proposition 2, we prove that
|P| ∼ (
1 + O

(√
d/n + d2/nk−2))|E|. (2)

Note that for d = o(nκ ), the error term in (2) tends to zero
and is at most the error term in (1). Thus, it is enough to
show (1) with |E | in place of |P|, which we do by writing

|E|
|E0| =

L∑
l=0

l∏
i=1

|Ei|
|Ei−1| , (3)

and estimating the ratio |El|/|El−1| uniformly for every 1 �
l � L.

In what follows it will be convenient to work directly
with permutation Y rather than with the k-multigraph
H(Y) generated by it. Recycling the notation, we still call
consecutive k-tuples (Yki+1, . . . , Yki+k) of Y edges, proper
edges, or loops, whatever appropriate. E.g., we say that Y
contains multiple edges, if H(Y) contains multiple edges,
that is, some two edges of Y are identical as multisets. We
use the standard notation (x)a = x(x − 1) · · · (x − a + 1).

The following proposition implies (2), because
P(Y ∈ E) = |E |/|P|.

Proposition 2. If k � 3, then P(Y ∈ E) = 1 − O (
√

d/n +
d2/nk−2).

A simple proof of Proposition 2 (details can be found in
the appendix of [6]) is based on the first moment method.
In particular, the expected numbers of pairs of multiple
edges, loops with less than k − 1 distinct vertices, and all
loops are, respectively, O (d2/nk−2), O (d/n), and Eλ(Y) ∼
k−1

2 (d − 1). The last formula implies that P(λ(Y) > L) �
Eλ(Y)

L = O (
√

d/n).

2.2. Switchings

Now we define an operation, called switching, which
generalizes to k-graphs a graph switching introduced in [9]
(see also [10]). Permutations y ∈ El , z ∈ El−1 are said to
be switchable, if z can be obtained from y by the follow-
ing operation. From the edges of y, choose a loop f and
two proper edges e1, e2 that are disjoint from f and share
at most k − 2 vertices (see Fig. 1(a)). Letting s = |e1 ∩ e2|,
write

f = v vx1 . . . xk−2, e1 = w1 . . . ws y1 . . . yk−s,

e2 = w1 . . . wsz1 . . . zk−s.

Select vertices y∗ ∈ {y1, . . . , yk−s} and z∗ ∈ {z1, . . . , zk−s},
and replace f , e1, and e2 by three proper edges

e′
1 = e1 ∪ {v} − {y∗}, e′

2 = e2 ∪ {v} − {z∗},
e′

3 = f ∪ {y∗, z∗} − {v, v}
as in Fig. 1(b). Since we are dealing with permutations, for
definiteness let us assume that the procedure is performed
by swapping with y∗ the copy of v which appears in y
further to the left and with z∗ the one further to the right.

We can reconstruct permutations in El+1 which are
switchable with y as follows. Pick a vertex v ∈ [n], two
edges e′

1, e′
2 containing v , and one more edge e′

3 (con-
sult with Fig. 1 again). Choose a pair {y∗, z∗} of vertices
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Fig. 1. Switching (a) before and (b) after.
from e′
3; replace e′

i , i = 1,2,3, by a loop and two edges
defined as

f = e′
3 ∪ {v, v} \ {y∗, z∗}, e1 = e′

1 ∪ {y∗} \ {v},
e2 = e′

2 ∪ {z∗} \ {v}.
Given y ∈ El , let F (y) and B(y) stand, respectively, for the
number of ways to perform the forward and backward
switching, or, in other words, the number of permuta-
tions x ∈ El−1 and z ∈ El+1 which are switchable with y.
Recall that L = √

nd and set Fl = d2n2l, l = 1, . . . , L, and
B = k−1

2 n2d2(d − 1).

Proposition 3. There is a sequence δ = δ(n) = O ((L + d2)/dn)

such that for all y ∈ El , 0 < l � L

(1 − δ)Fl � F (y) � Fl and (1 − δ)B � B(y) � B.

Proof. Clearly F (y) � lm2k2 = n2d2l. We say that two
edges e′ , e′′ of a k-graph are distant from each other if
their distance in the intersection graph of H(y) is at least
three. Note that given f , e1, and e2, some choice of y∗ and
z∗ might not yield a permutation z ∈ El−1, because one or
more of e′

i ’s might already be present in y. However, all k2

choices of (y∗, z∗) are allowed, if e1 ∩ e2 = ∅ and both e1
and e2 are distant from f . Therefore,

F (y) � k2(m − l − 2k2d2)2
l

= k2m2l
(
1 − O

((
L + d2)/m

))
.

Clearly B(y) � n(d)2m
(k

2

) = B . To bound B(y) from below,
we estimate the number of choices of (v, e′ , e′ , e′ ), for
1 2 3
which at least one pair {y∗, z∗} does not yield a permuta-
tion in El+1. This can only happen when one of e′

1, e′
2, e′

3 is
a loop, which occurs for at most 2kldm + ln(d)2 choices, or
when e′

3 is not distant from both e′
1 and e′

2, which occurs
for at most n(d)2 · 2k2d2 choices. We have B = Θ(n2d3),
therefore

B(y) � B −
(

k

2

)(
2kldm + ln(d)2 + 2k2nd4)

= B

(
1 − O

(
L + d2

nd

))
. �

Proof of Theorem 1. Counting the switchable pairs y ∈ El ,
z ∈ El−1 in two ways, from Proposition 3 we conclude that

(1 − δ)B

Fl
� |El|

|El−1| �
B

(1 − δ)Fl
. (4)

Since B/Fl = (k − 1)(d − 1)/2l, from (3) and (4) we get

L∑
l=0

xl

l! �
|E|
|E0| �

L∑
l=0

yl

l!
where x = 1

2 (1 − δ)(k − 1)(d − 1) and y = 1
2 (k − 1)(d −

1)/(1 − δ). Therefore by Taylor’s theorem |E |/|E0| is at
most ey and at least

ex(1 − xL/L!) � ex(1 − (ex/L)L) = exp
{

x − o(
√

d/n )
}
,

the inequality following from a standard fact L! � (L/e)L .
Since x, y = (k − 1)(d − 1)/2 + O (

√
d/n + d2/n), we get

|E| = exp

{
1
(k − 1)(d − 1) + O

(√
d/n + d2/n

)}

|E0| 2
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which together with (2) implies (1), hereby completing the
proof. �
3. Concluding remarks

Remark 1. We believe that for k = 3 the constraint d =
o(n1/2) in Theorem 1 can be relaxed to d = o(n) by al-
lowing O (d2/n) multiple edges in y ∈ E and applying an
appropriate switching technique to eliminate them along
with the loops.

Remark 2. In a forthcoming paper [7] we apply the switch-
ing technique presented here to embed asymptotically
almost surely (a.a.s.) an ordinary Erdős–Rényi random
k-graph H

(k)(n,m′), k � 3, into a random d-regular k-graph
H

(k)(n,d) for d = Ω(log n), d = o(
√

n) and m′ = cnd/k, for
some constant c > 0. Consequently, a.a.s. H(k)(n,d) inherits
from H

(k)(n,m′) all increasing properties held by the latter
model.

Remark 3. An algorithm of McKay and Wormald [9] can
be easily adapted to k-graphs, yielding an expected poly-
nomial time uniform generation of d-regular k-graphs in
H(k)(n,d). The algorithm keeps selecting a random per-
mutation y ∈ P until y ∈ E . Then, iteratively, a random
switching is applied λ(y) times to eliminate all loops and
finally yield a random element of E0. This leads to an
almost uniform distribution over H(k)(n,d). To make it ex-
actly uniform, McKay and Wormald applied an ingenious
trick of restarting the whole algorithm after every iteration
of switching, say from y ∈ El to z ∈ El−1, with probability
1 − (F (y)(1 − δ1)B)/(B(z)Fl) � 2δ1. However, the assump-
tion on d has to be strengthened, so that the reciprocal of
the probability of not restarting the algorithm before its
successful termination, or (1 − φk(n))−1(1 − 2δ1(n))−L =
eO (δ1(n)L) , is at most a polynomial function of n. With our
choice of L this imposes the bound d = O (n1/3(log n)2/3).
We may push it up to d = O (

√
n log n ) by redefining L =

kd + ω(n) for any (sufficiently slow) sequence ω(n) → ∞.
This change requires that in the last part of the proof of
Proposition 2, instead of the first moment, Chebyshev’s in-
equality is used (see the appendix of [6]).
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