Contents lists available at SciVerse ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

CrossMark

Approximate counting of regular hypergraphs

Andrzej Dudek^{a,*,1}, Alan Frieze^{b,2}, Andrzej Ruciński^{c,3}, Matas Šileikis^{d,4}

^a Department of Mathematics, Western Michigan University, Kalamazoo, MI, USA

^b Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA, USA

^c Department of Discrete Mathematics, Adam Mickiewicz University, Poznań, Poland

^d Department of Mathematics, Uppsala University, Sweden

ARTICLE INFO

Article history: Received 5 March 2013 Received in revised form 27 June 2013 Accepted 22 July 2013 Available online 29 July 2013 Communicated by B. Doerr

Keywords: Combinatorial problems Hypergraphs Switching

1. Introduction

We consider *k*-uniform hypergraphs (or *k*-graphs, for short) on the vertex set $V = [n] := \{1, ..., n\}$. A *k*-graph H = (V, E) is *d*-regular, if the degree of every vertex $v \in V$, $\deg_H(v) := \deg(v) := |\{e \in E: v \in e\}|$ equals *d*.

Let $\mathcal{H}^{(k)}(n,d)$ be the class of all *d*-regular *k*-graphs on [n]. Note that each $H \in \mathcal{H}^{(k)}(n,d)$ has m := nd/k edges (throughout, we implicitly assume that k|nd). We treat *d* as a function of *n*, possibly constant.

A result of McKay [8] contains an asymptotic formula for the number of *n*-vertex *d*-regular graphs, when $d \le \varepsilon n$ for any constant $\varepsilon < 2/9$. In this paper we present an asymptotic enumeration of all *d*-regular *k*-graphs on a given set of *n* vertices, where $k \ge 3$ and d = d(n) is ei-

* Corresponding author.

ABSTRACT

In this paper we asymptotically count *d*-regular *k*-uniform hypergraphs on *n* vertices, provided *k* is fixed and $d = d(n) = o(n^{1/2})$. In doing so, we extend to hypergraphs a switching technique of McKay and Wormald.

© 2013 Elsevier B.V. All rights reserved.

ther a constant or does not grow with *n* too quickly. Let $\kappa = \kappa (k) = 1$ for $k \ge 4$ and $\kappa (3) = 1/2$.

Theorem 1. For every $k \ge 3$, $1 \le d = o(n^{\kappa})$, and

The error term in the exponent tends to zero (thus giving the asymptotics of $|\mathcal{H}^{(k)}(n,d)|$) if and only if $d = o(n^{1/2})$. Cf. an analogous formula for k = 2 by McKay [8], which gives the asymptotics if and only if $d = o(n^{1/3})$. Recently, Blinovsky and Greenhill [2] obtained more general results counting sparse uniform hypergraphs with given degrees.

Theorem 1 extends a result from [5] where Cooper, Frieze, Molloy and Reed proved that formula for d fixed using the by now standard *configuration model* (see [1,3, 11] for the graph case). Already for graphs, in [8], and later in [9] and [10], this technique was combined with the idea of *switchings*, a sequence of operations on a graph

E-mail address: andrzej.dudek@wmich.edu (A. Dudek).

 $^{^{1}\,}$ Research supported in part by Simons Foundation Grant #244712.

² Research supported in part by NSF Grant CCF2013110.

³ Research supported by the Polish NSC grant N201 604940 and the NSF grant DMS-1102086. Part of research performed at Emory University, Atlanta.

⁴ Research supported by the Polish NSC grant N201 604940. Part of research performed at Adam Mickiewicz University, Poznań.

^{0020-0190/\$ -} see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.ipl.2013.07.018

which eliminate loops and multiple edges, while keeping the degrees unchanged and leading to an *almost* uniform distribution of the simple graphs obtained as the ultimate outcome (but see Remark 3 in Section 3).

To prove Theorem 1 we apply these ideas together with a modification from [4], where instead of configurations, permutations were used to generate graphs with a given degree sequence. To describe this modification, consider a generalization of a *k*-graph in which edges are multisets of vertices rather than just sets. By a *k*-multigraph we mean a pair H = (V, E) where V is a set and E is a multiset of *k*-element multisubsets of V. Thus we allow both multiple edges and loops, a *loop* being an edge which contains more than one copy of a vertex. We call an edge *proper* if it is not a loop. We say that a *k*-multigraph is *simple* if it is a *k*-graph, that is, if it contains neither multiple edges nor loops. Henceforth, for brevity of notation, we denote an edge of a *k*-multigraph by $v_1 \dots v_k$ rather than $\{v_1, \dots, v_k\}$.

Given a sequence $\mathbf{x} \in [n]^{ks}$, $s \in \mathbb{N}$, let $H(\mathbf{x})$ stand for the k-multigraph with edge multiset $E = \{x_{ki+1}, \ldots, x_{ki+k}: i = 0, \ldots, s - 1\}$ and let $\lambda(\mathbf{x})$ be the number of loops in $H(\mathbf{x})$.

Let $\mathcal{P} = \mathcal{P}(n, d) \subset [n]^{nd}$ be the family of all permutations of the sequence

$$(\underbrace{1,\ldots,1}_{d},\underbrace{2,\ldots,2}_{d},\ldots,\underbrace{n,\ldots,n}_{d}).$$

Note that $|\mathcal{P}| = (nd)!(d!)^{-n}$. Let $\mathbf{Y} = (Y_1, \dots, Y_{nd})$ be chosen uniformly at random from \mathcal{P} .

In the next section we sketch a proof of Theorem 1 together with some auxiliary results.

2. Proof of Theorem 1

2.1. Setup

Let \mathcal{E} be the family of those permutations $\mathbf{y} \in \mathcal{P}$ for which the *k*-multigraph $H(\mathbf{y})$ has no multiple edges and contains at most

 $L := \sqrt{nd}$

loops, but no loops with less than k - 1 distinct vertices. Let

$$\mathcal{E}_l = \{ \mathbf{y} \in \mathcal{E} \colon \lambda(\mathbf{y}) = l \}, \quad l = 0, \dots, L.$$

Note that

$$\mathcal{E}_0 = \left\{ \mathbf{y} \in \mathcal{P} \colon H(\mathbf{y}) \in \mathcal{H}^{(k)}(n, d) \right\}$$

is precisely the family of those permutations from \mathcal{P} which represent simple *k*-graphs. In turn, for each $H \in \mathcal{H}^{(k)}(n, d)$ there are $(nd/k)!(k!)^{nd/k}$ permutations $\mathbf{y} \in \mathcal{E}_0$ with $H(\mathbf{y}) = H$. Therefore, in order to prove Theorem 1, it suffices to show that

$$|\mathcal{P}|/|\mathcal{E}_0| = \exp\left\{\frac{1}{2}(k-1)(d-1) + O\left(\sqrt{d/n} + d^2/n\right)\right\}.$$
 (1)

Our plan is as follows. First, in Proposition 2, we prove that

$$\mathcal{P}|\sim \left(1+O\left(\sqrt{d/n}+d^2/n^{k-2}\right)\right)|\mathcal{E}|.$$
(2)

Note that for $d = o(n^{\kappa})$, the error term in (2) tends to zero and is at most the error term in (1). Thus, it is enough to show (1) with $|\mathcal{E}|$ in place of $|\mathcal{P}|$, which we do by writing

$$\frac{|\mathcal{E}|}{|\mathcal{E}_0|} = \sum_{l=0}^{L} \prod_{i=1}^{l} \frac{|\mathcal{E}_i|}{|\mathcal{E}_{i-1}|},$$
(3)

and estimating the ratio $|\mathcal{E}_l|/|\mathcal{E}_{l-1}|$ uniformly for every $1 \leq l \leq L$.

In what follows it will be convenient to work directly with permutation **Y** rather than with the *k*-multigraph $H(\mathbf{Y})$ generated by it. Recycling the notation, we still call consecutive *k*-tuples $(Y_{ki+1}, \ldots, Y_{ki+k})$ of **Y** edges, proper edges, or loops, whatever appropriate. E.g., we say that **Y** contains multiple edges, if $H(\mathbf{Y})$ contains multiple edges, that is, some two edges of **Y** are identical as multisets. We use the standard notation $(x)_a = x(x-1)\cdots(x-a+1)$.

The following proposition implies (2), because $\mathbb{P}(\mathbf{Y} \in \mathcal{E}) = |\mathcal{E}|/|\mathcal{P}|.$

Proposition 2. If $k \ge 3$, then $\mathbb{P}(\mathbf{Y} \in \mathcal{E}) = 1 - O(\sqrt{d/n} + d^2/n^{k-2})$.

A simple proof of Proposition 2 (details can be found in the appendix of [6]) is based on the first moment method. In particular, the expected numbers of pairs of multiple edges, loops with less than k - 1 distinct vertices, and all loops are, respectively, $O(d^2/n^{k-2})$, O(d/n), and $\mathbb{E}\lambda(\mathbf{Y}) \sim \frac{k-1}{2}(d-1)$. The last formula implies that $\mathbb{P}(\lambda(\mathbf{Y}) > L) \leq \frac{\mathbb{E}\lambda(\mathbf{Y})}{r} = O(\sqrt{d/n})$.

2.2. Switchings

Now we define an operation, called *switching*, which generalizes to *k*-graphs a graph switching introduced in [9] (see also [10]). Permutations $\mathbf{y} \in \mathcal{E}_l$, $\mathbf{z} \in \mathcal{E}_{l-1}$ are said to be *switchable*, if \mathbf{z} can be obtained from \mathbf{y} by the following operation. From the edges of \mathbf{y} , choose a loop f and two proper edges e_1, e_2 that are disjoint from f and share at most k - 2 vertices (see Fig. 1(a)). Letting $s = |e_1 \cap e_2|$, write

$$f = vvx_1 \dots x_{k-2}, \qquad e_1 = w_1 \dots w_s y_1 \dots y_{k-s},$$
$$e_2 = w_1 \dots w_s z_1 \dots z_{k-s}.$$

Select vertices $y_* \in \{y_1, \ldots, y_{k-s}\}$ and $z_* \in \{z_1, \ldots, z_{k-s}\}$, and replace f, e_1 , and e_2 by three proper edges

$$e'_{1} = e_{1} \cup \{v\} - \{y_{*}\}, \qquad e'_{2} = e_{2} \cup \{v\} - \{z_{*}\}, \\ e'_{3} = f \cup \{y_{*}, z_{*}\} - \{v, v\}$$

as in Fig. 1(b). Since we are dealing with permutations, for definiteness let us assume that the procedure is performed by swapping with y_* the copy of v which appears in **y** further to the left and with z_* the one further to the right.

We can reconstruct permutations in \mathcal{E}_{l+1} which are switchable with **y** as follows. Pick a vertex $v \in [n]$, two edges e'_1 , e'_2 containing v, and one more edge e'_3 (consult with Fig. 1 again). Choose a pair $\{y_*, z_*\}$ of vertices

Fig. 1. Switching (a) before and (b) after.

from e'_3 ; replace e'_i , i = 1, 2, 3, by a loop and two edges defined as

$$f = e'_3 \cup \{v, v\} \setminus \{y_*, z_*\}, \qquad e_1 = e'_1 \cup \{y_*\} \setminus \{v\},$$
$$e_2 = e'_2 \cup \{z_*\} \setminus \{v\}.$$

Given $\mathbf{y} \in \mathcal{E}_l$, let $F(\mathbf{y})$ and $B(\mathbf{y})$ stand, respectively, for the number of ways to perform the forward and backward switching, or, in other words, the number of permutations $\mathbf{x} \in \mathcal{E}_{l-1}$ and $\mathbf{z} \in \mathcal{E}_{l+1}$ which are switchable with \mathbf{y} . Recall that $L = \sqrt{nd}$ and set $F_l = d^2n^2l$, l = 1, ..., L, and $B = \frac{k-1}{2}n^2d^2(d-1)$.

Proposition 3. There is a sequence $\delta = \delta(n) = O((L + d^2)/dn)$ such that for all $\mathbf{y} \in \mathcal{E}_l$, $0 < l \leq L$

$$(1-\delta)F_l \leq F(\mathbf{y}) \leq F_l$$
 and $(1-\delta)B \leq B(\mathbf{y}) \leq B$.

Proof. Clearly $F(\mathbf{y}) \leq lm^2k^2 = n^2d^2l$. We say that two edges e', e'' of a *k*-graph are *distant* from each other if their distance in the intersection graph of $H(\mathbf{y})$ is at least three. Note that given f, e_1 , and e_2 , some choice of y_* and z_* might not yield a permutation $\mathbf{z} \in \mathcal{E}_{l-1}$, because one or more of e'_i 's might already be present in \mathbf{y} . However, all k^2 choices of (y_*, z_*) are allowed, if $e_1 \cap e_2 = \emptyset$ and both e_1 and e_2 are distant from f. Therefore,

$$F(\mathbf{y}) \ge k^2 (m - l - 2k^2 d^2)^2 l$$

= $k^2 m^2 l (1 - O((L + d^2)/m))$

Clearly $B(\mathbf{y}) \leq n(d)_2 m{k \choose 2} = B$. To bound $B(\mathbf{y})$ from below, we estimate the number of choices of (v, e'_1, e'_2, e'_3) , for

which at least one pair $\{y_*, z_*\}$ does not yield a permutation in \mathcal{E}_{l+1} . This can only happen when one of e'_1, e'_2, e'_3 is a loop, which occurs for at most $2kldm + ln(d)_2$ choices, or when e'_3 is not distant from both e'_1 and e'_2 , which occurs for at most $n(d)_2 \cdot 2k^2d^2$ choices. We have $B = \Theta(n^2d^3)$, therefore

$$B(\mathbf{y}) \ge B - \binom{k}{2} \left(2kldm + \ln(d)_2 + 2k^2nd^4\right)$$
$$= B\left(1 - O\left(\frac{L+d^2}{nd}\right)\right). \quad \Box$$

Proof of Theorem 1. Counting the switchable pairs $\mathbf{y} \in \mathcal{E}_l$, $\mathbf{z} \in \mathcal{E}_{l-1}$ in two ways, from Proposition 3 we conclude that

$$\frac{(1-\delta)B}{F_l} \leqslant \frac{|\mathcal{E}_l|}{|\mathcal{E}_{l-1}|} \leqslant \frac{B}{(1-\delta)F_l}.$$
(4)

Since $B/F_l = (k - 1)(d - 1)/2l$, from (3) and (4) we get

$$\sum_{l=0}^{L} \frac{x^{l}}{l!} \leqslant \frac{|\mathcal{E}|}{|\mathcal{E}_{0}|} \leqslant \sum_{l=0}^{L} \frac{y^{l}}{l!}$$

where $x = \frac{1}{2}(1-\delta)(k-1)(d-1)$ and $y = \frac{1}{2}(k-1)(d-1)/(1-\delta)$. Therefore by Taylor's theorem $|\mathcal{E}|/|\mathcal{E}_0|$ is at most e^y and at least

$$e^{x}(1-x^{L}/L!) \ge e^{x}(1-(ex/L)^{L}) = \exp\left\{x-o(\sqrt{d/n})\right\}$$

the inequality following from a standard fact $L! \ge (L/e)^L$. Since $x, y = (k-1)(d-1)/2 + O(\sqrt{d/n} + d^2/n)$, we get

$$\frac{|\mathcal{E}|}{|\mathcal{E}_0|} = \exp\left\{\frac{1}{2}(k-1)(d-1) + O\left(\sqrt{d/n} + d^2/n\right)\right\}$$

which together with (2) implies (1), hereby completing the proof. $\ \ \Box$

3. Concluding remarks

Remark 1. We believe that for k = 3 the constraint $d = o(n^{1/2})$ in Theorem 1 can be relaxed to d = o(n) by allowing $O(d^2/n)$ multiple edges in $\mathbf{y} \in \mathcal{E}$ and applying an appropriate switching technique to eliminate them along with the loops.

Remark 2. In a forthcoming paper [7] we apply the switching technique presented here to embed asymptotically almost surely (*a.a.s.*) an ordinary Erdős–Rényi random *k*-graph $\mathbb{H}^{(k)}(n, m')$, $k \ge 3$, into a random *d*-regular *k*-graph $\mathbb{H}^{(k)}(n, d)$ for $d = \Omega(\log n)$, $d = o(\sqrt{n})$ and m' = cnd/k, for some constant c > 0. Consequently, *a.a.s.* $\mathbb{H}^{(k)}(n, d)$ inherits from $\mathbb{H}^{(k)}(n, m')$ all increasing properties held by the latter model.

Remark 3. An algorithm of McKay and Wormald [9] can be easily adapted to k-graphs, yielding an expected polynomial time uniform generation of *d*-regular *k*-graphs in $\mathcal{H}^{(k)}(n,d)$. The algorithm keeps selecting a random permutation $\mathbf{y} \in \mathcal{P}$ until $\mathbf{y} \in \mathcal{E}$. Then, iteratively, a random switching is applied $\lambda(\mathbf{y})$ times to eliminate all loops and finally yield a random element of \mathcal{E}_0 . This leads to an almost uniform distribution over $\mathcal{H}^{(k)}(n, d)$. To make it *ex*actly uniform, McKay and Wormald applied an ingenious trick of restarting the whole algorithm after every iteration of switching, say from $\mathbf{y} \in \mathcal{E}_l$ to $\mathbf{z} \in \mathcal{E}_{l-1}$, with probability $1 - (F(\mathbf{y})(1 - \delta_1)B)/(B(\mathbf{z})F_l) \leq 2\delta_1$. However, the assumption on d has to be strengthened, so that the reciprocal of the probability of not restarting the algorithm before its successful termination, or $(1 - \phi_k(n))^{-1}(1 - 2\delta_1(n))^{-L} =$ $e^{O(\delta_1(n)L)}$, is at most a polynomial function of *n*. With our

choice of *L* this imposes the bound $d = O(n^{1/3}(\log n)^{2/3})$. We may push it up to $d = O(\sqrt{n \log n})$ by redefining $L = kd + \omega(n)$ for any (sufficiently slow) sequence $\omega(n) \to \infty$. This change requires that in the last part of the proof of Proposition 2, instead of the first moment, Chebyshev's inequality is used (see the appendix of [6]).

Acknowledgements

We would like to thank the referees for their valuable comments and suggestions.

References

- [1] E. Bender, R. Canfield, The asymptotic number of labeled graphs with given degree sequences, J. Combinatorial Theory Ser. A 24 (3) (1978) 296–307.
- [2] V. Blinovsky, C. Greenhill, Asymptotic enumeration of sparse uniform hypergraphs with given degrees, http://arxiv.org/abs/1306.2012.
- [3] B. Bollobás, A probabilistic proof of an asymptotic formula for the number of labelled regular graphs, European J. Combin. 1 (4) (1980) 311–316.
- [4] C. Cooper, A.M. Frieze, M. Krivelevich, Hamilton cycles in random graphs with a fixed degree sequence, SIAM J. Discrete Math. 24 (2) (2010) 558–569.
- [5] C. Cooper, A.M. Frieze, M. Molloy, B. Reed, Perfect matchings in random *r*-regular, *s*-uniform hypergraphs, Combin. Probab. Comput. 5 (1) (1996) 1–14.
- [6] A. Dudek, A. Frieze, A. Ruciński, M. Šileikis, Approximate counting of regular hypergraphs, http://arxiv.org/abs/1303.0400.
- [7] A. Dudek, A. Frieze, A. Ruciński, M. Šileikis, Loose Hamilton cycles in random regular hypergraphs, Combin. Probab. Comput., in press.
- [8] B.D. McKay, Asymptotics for symmetric 0–1 matrices with prescribed row sums, Ars Combin. 19 (1985) 15–25.
- [9] B.D. McKay, N.C. Wormald, Uniform generation of random regular graphs of moderate degree, J. Algorithms 11 (1) (1990) 52–67.
- [10] B.D. McKay, N.C. Wormald, Asymptotic enumeration by degree sequence of graphs with degrees $o(n^{1/2})$, Combinatorica 11 (4) (1991) 369–382.
- [11] N.C. Wormald, The asymptotic distribution of short cycles in random regular graphs, J. Combin. Theory Ser. B 31 (2) (1981) 168–182.