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Abstract

In this paper we show that every family of triples, that is, a 3-uniform

hypergraph, with minimum degree at least ( 5−
√

5

3
+γ)

(

n−1

2

)

contains a tight
Hamiltonian cycle.
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1. Introduction

Recently there has been a lot of interest in Dirac-type properties of uniform
hypergraphs. With this name we describe a general class of problems and results
linking minimum degrees of k-uniform hypergraphs to the existence of a Hamilton
cycle or a (near) perfect matching, see, e.g., [7, 16, 12, 18, 8, 10, 5, 2, 3], and
[11, 17, 14, 19, 1, 21, 4], resp. See [15] for a survey on this subject.

In this paper we restrict ourselves to families of triples, that is, to 3-uniform
hypergraphs H = (V,E), where V := V (H) is a finite set of vertices (usually,
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|V | = n) and E := E(H) ⊆
(

V
3

)

is a family of 3-element subsets of V, or triples.
We will call such an H a 3-graph for short. Whenever convenient we will identify
H with E(H). We write H for the complement of H, that is, H =

(

V
3

)

\H.
There are several notions of a hypercycle. Here we consider only hypercycles

whose triples form consecutive segments of a cyclic ordering of the vertices. For
l = 1, 2, an l-overlapping cycle is a 3-graph whose vertices can be ordered
cyclically in such a way that every triple forms a segment of this ordering and
every two consecutive triples share l vertices. For l = 1 we call these cycles loose,
while for l = 2 we call them tight. Note that in the former case the number of
vertices must be even, and that in the latter case the number of triples equals the
number of vertices. Loose and tight paths are defined in the same way, but with
respect to a linear ordering of the vertices. For l = 1, 2, an l-overlapping cycle
in H is Hamiltonian if it passes through all the vertices of H. For the sake of
unification, a perfect matching (that is, a set of disjoint triples in H containing
all the vertices) can be viewed as a Hamiltonian 0-overlapping cycle.

For a vertex v ∈ V (H), let H(v) denote the link graph of v in H, that is,

H(v) =

{

e ∈
(

V \ {v}
2

)

: e ∪ {v} ∈ H

}

.

In particular, |H(v)| = degH(v), where degH(v) is the degree of vertex v in H.
We set δ1(H) = minv degH(v) and observe that, trivially, δ1(H) ≤

(

n−1
2

)

.
Besides the notion of vertex degree, in triple systems one can also define a pair

degree. Given a 3-graph H and two vertices u, v ∈ V (H), we denote by NH(u, v)
the set of all triples of H which contain {u, v}. We call degH(u, v) = |NH(u, v)|
the degree of the pair {u, v} in H. Let δ2(H) denote the minimum pair degree in
H and observe that δ2(H) ≤ n− 2.

The relation between the minimum degree δd(H), d = 1, 2, and the presence
of a Hamiltonian l-overlapping cycle in a 3-graph, l = 0, 1, 2, is best depicted in
terms of the extremal parameter hld(n).

Definition 1. Let d, l, and n satisfy 1 ≤ d ≤ 2, 0 ≤ l ≤ 2, and 3 − l divide n.
We define hld(n) to be the smallest integer h such that every n-vertex 3-graph H
satisfying δd(H) ≥ h contains a Hamiltonian l-overlapping cycle.

The first Dirac-type result for 3-graphs was obtained by Katona and Kierstead
who proved in [7] that

⌊n

2

⌋

≤ h22(n) ≤ 5

6
n +

13

6
.

Katona and Kierstead (implicitly) conjectured that their lower bound is the cor-
rect value of h22(n). Recently, this has been confirmed in [20]. Earlier, Kühn and
Osthus proved in [12] that h12(n) ∼ 1

4n. Very recently, Buss, Hàn, and Schacht

proved in [2] that h11(n) ∼ 7
16

(

n−1
2

)

. As far as perfect matchings are concerned,
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l 0 1 2
d

1
(

n−1
2

)

−
(

2n/3
2

)

+ 1 ∼ 5
9

(

n−1
2

)

∼ 7
16

(

n−1
2

)

∼ (?)
(

n−1
2

)

[4, 13, 9] [2]

2 n
2 + O(1) ∼ 1

4n
⌊

n
2

⌋

[17] [12] [20]

Table 1. Known values of hl

d
(n).

h02(n) = n
2 + O(1) ([17]) and h01(n) ∼ 5

9

(

n−1
2

)

([4], see also Construction 1 and
Theorem 12 below). This leaves only one case open: d = 1 and l = 2. (See Table
1 for a concise summary of those results.)

While proving a more general result, Glebov, Person, and Weps [3] showed
that h21(n) ≤ (1 − ǫ)

(

n−1
2

)

, where the numerical value of ǫ is of the order of
magnitute of 5 × 10−7. In this paper we improve that bound.

Theorem 1. For every γ > 0 there exists n0 such that if n ≥ n0, then

h21(n) ≤
(

5 −
√

5

3
+ γ

)

(

n− 1

2

)

.

Still, the upper bound on h21(n) provided by Theorem 1 seems to be far from the
truth. Indeed, two different critical constructions yield the same lower bound of
asymptotically only 5

9

(

n−1
2

)

(see Figure 1).

Construction 1. Let H1 = (V,E1), where V = X ∪ Y , x := |X| = ⌈n3 ⌉ − 1,

y := |Y | = n − x, and E1 =
{

e ∈
(

V
3

)

: e ∩X 6= ∅
}

. Then δ1(H1) =
(

n−1
2

)

−
(

y−1
2

)

∼ 5
9

(

n−1
2

)

. Suppose that H1 has a tight Hamiltonian cycle C. Then X is a
vertex cover of C. (Indeed, as no edge of H1 is contained entirely in Y , the set X is
a vertex cover of H1.) But C is 3-regular, so n = |C| ≤∑x∈X degC(x) = 3x < n,
a contradiction.

Construction 2. Let H2 = (V,E2), where V = X ∪ Y , x := |X| = ⌈n+1
3 ⌉,

y := |Y | = n− x, and E2 =
{

e ∈
(

V
3

)

: |e ∩ Y | 6= 1
}

.

Then δ1(H2) = min
{(

x−1
2

)

+
(

y
2

)

,
(

y−1
2

)

+ x(y − 1)
}

=
(

x−1
2

)

+
(

y
2

)

∼ 5
9

(

n−1
2

)

.
Suppose that H2 has a tight Hamiltonian cycle C. Then X is an independent
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set in C. (Indeed, there is no tight path in H2 connecting a triple in X with
a vertex in Y .) Since no triple of H2, and consequently of C, has exactly two
vertices in X, and C is 3-regular, we have n = |C| ≥∑x∈X degC(x) = 3x > n, a
contradiction.

Figure 1. Two critical constructions.

Note that H1 does not even have a perfect matching and so, for n divisible by
3, H1 yields the lower bound on h01(n). Judging by the similarity between the
existing results on Dirac thresholds for perfect matchings and for Hamiltonian
cycles, it is tempting to conjecture that, indeed, h21(n) ∼ h01(n) ∼ 5

9

(

n−1
2

)

.

On the other hand, H2 does have a perfect matching (if 3|n). More impor-
tantly, the pairs of vertices in H2 form a disconnected structure. This suggests
that any straightforward application of the absorbing method, as in [18, 20, 5]
(see also [15]), which relies, among other tools, on a (pair) connecting lemma,
may not work here.

2. Two Lemmas

Our proof of Theorem 1 deviates from the standard approach described in Section
3 (c.f. [15]), in that it relies on two new lemmas. In both we implicitly assume that
γ > 0 is arbitrarily small and n > n0, where n0 = n0(γ) is sufficiently large. Pairs
of vertices u, v with degree degH(u, v) ≥ (12+γ)n will be called large (in H). From
now on we will refer to tight paths and cycles as paths and cycles, resp. If P is a
path with t ≥ 3 vertices v1, . . . , vt and t−2 edges {v1, v2, v3}, . . . , {vt−2, vt−1, vt},
then we call the ordered pairs (v1, v2) and (vt, vt−1) the endpairs of P , and we
say that P connects its endpairs, or that P goes between them. The length of a
path is defined as the number of its vertices.
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Our first lemma replaces the Connecting Lemma (Lemma 2.13 in [15]). It turns
out that when δ1(H) ≥ 7

8

(

n−1
2

)

, there are short paths between all large pairs of
vertices. This lemma will be sufficient for our proof of Theorem 1, since we will
make sure that the paths to be connected will indeed have large endpairs only.

Lemma 2. For every γ > 0, if δ1(H) ≥ 7
8

(

n−1
2

)

then for every pair of large pairs

u, v and x, y of vertices there is a path on six vertices between (u, v) and (x, y).

In the proof of Lemma 2 we will need the following fact whose simple proof is
omitted.

Fact 1. Let B and R be arbitrary, not necessarily disjoint sets, where |B| ≤ |R|.
Then

|{{b, r} : b ∈ B, r ∈ R}| ≥
(|B|

2

)

.

Proof of Lemma 2. By the assumption on δ1(H),

|H(v) ∩H(y)| ≥ 3

4

(

n− 1

2

)

−O(n).

Let us set G = H(v) ∩H(y) − {u, x} and observe that |V (G)| = n− 4 and

(1) |E(G)| ≥ 3

4

(

n− 1

2

)

−O(n).

If there is an edge {w, z} ∈ G such that {x, y, z} ∈ H and {u, v, w} ∈ H then the
vertices x, y, z, w, v, u span the desired path (see Figure 2).

Figure 2. Illustration to the proof of Lemma 2.

Let us apply Fact 1 with B = NH(u, v) ∩ V (G) and R = NH(x, y) ∩ V (G) (we
assume w.l.o.g. that |B| ≤ |R|). As

|B| ≥ (12 + γ)n− 2,

by Fact 1 and (1) we conclude that, for sufficiently large n, the number of pairs
{w, z} ∈

(

V (G)
2

)

such that {x, y, z} ∈ H and {u, v, w} ∈ H is at least
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(|B|
2

)

≥ 1

2

(

1

2
+ γ

)2

n2 + O(n) >

(

1

8
+

γ

2

)

n2 >

(

n− 4

2

)

− |E(G)|,

which implies that at least one of these pairs is the desired edge {w, z} of G.

The second lemma allows us to get down to a desirable position where all pairs of
vertices with positive degrees are large without too much sacrifice of the vertex
degrees.

Lemma 3. If δ1(H) ≥ (5−
√
5

3 + γ)
(

n−1
2

)

then there exists a spanning subhyper-

graph H ′ of H such that

(i) δ1(H
′) ≥ (59 + γ/2)

(

n−1
2

)

and

(ii) for every pair u, v ∈ V either degH′(u, v) = 0 or degH′(u, v) ≥ (12 + γ)n.

Proof. Set H0 = H and consider the following “shaving” procedure which is
iterated for as long as it is possible. The (i + 1)st step, i ≥ 0, can be described
as follows. Suppose that we have already constructed a subhypergraph Hi, and
that there exists a pair ei+1 ∈

(

V
2

)

with 0 < degHi
(ei+1) < (12 + γ)n. Then delete

from Hi all edges which contain ei+1 and call the resulting subhypergraph Hi+1.
Let t be the smallest integer such that

{

e ∈
(

V

2

)

: 0 < degHt
(e) <

(

1

2
+ γ

)

n

}

= ∅.

We claim that H ′ = Ht is the required subhypergraph of H. By the definition of
t, it remains to show that δ1(H

′) ≥ (59 + γ/2)
(

n−1
2

)

.

For every vertex v ∈ V , let us estimate the difference degH(v) − degH′(v),
which counts the edges of H containing v and lost in the process of “shaving”.
For j = 1, . . . , t, let Sj be the graph with vertex set V = V (H) and edge set
{e1, . . . , ej}, and let ∆j := ∆(Sj) be the maximum degree in the graph Sj . Every
lost edge of H must contain a pair ei from St (see Figure 3). Let us first count
those of them which contain a pair ei such that v ∈ ei. Let d = degSt

(v). Then
the number of such edges of H is at most

(

d

2

)

+ d(n− 1 − d) < dn− d2/2 ≤ ∆tn− ∆2
t /2.

The number of remaining edges of H lost at v cannot exceed t, the number of
pairs in St. In turn, trivially, t ≤ ∆tn/2. Altogether,

(2) degH(v) − degH′(v) ≤ ∆tn− ∆2
t /2 + t ≤ 3

2
∆tn− ∆2

t /2.
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Figure 3. Types of edges “shaved” at vertex v

(pairs in St are drawn with straight lines).

Below we are going to show that ∆t ≤ (12 −
√
5
6 )n which, by (2) and by our

assumption on δ1(H), immediately implies that for every v ∈ V

(3) degH′(v) ≥
(

5 −
√

5

3
+ γ

)

(

n− 1

2

)

− 3

2
∆tn+∆2

t /2 ≥
(

5

9
+ γ/2

)(

n− 1

2

)

.

Thus, in order to complete the proof of Lemma 3, it remains to show the following
claim.

Claim 4. ∆t ≤ (12 −
√
5
6 )n.

Proof. Suppose to the contrary that ∆t > (12 −
√
5
6 )n and let s be the smallest

index such that

(4) ∆s =

⌈(

1

2
−

√
5

6

)

n

⌉

.

Consider a vertex v ∈ V with degSs
(v) = ∆s. By the assumption on δ1(H) we

have

degH(v) = |H(v)| ≥
(

5 −
√

5

3
+ γ

)

(

n− 1

2

)

.

We will next show that the complement of the link, H(v) =
(

V \{v}
2

)

\ H(v),
satisfies

|H(v)| >
(√

5 − 2

3
− γ

)

(

n− 1

2

)

,

a contradiction, since then |H(v)| + |H(v)| >
(

n−1
2

)

.



370 V. Rödl and A. Ruciński

Let u1, . . . , u∆s
be the neighbors of v in Ss, connected to v at steps t1 ≤ · · · ≤ t∆s

of the “shaving” procedure, that is, etj+1 = {v, uj}, j = 1, . . . ,∆s. Because

0 < degHtj
(v, uj) < (12 + γ)n,

we have

(5) degHtj
(v, uj) ≥ n− 2 − degHtj

(v, uj) > (12 − γ)n− 2.

Let deg−
Htj

(v, uj) and deg−
H

(v, uj) stand for the number of neighbors of {v, uj}
in, respectively, Htj and H within the set V \ {u1, . . . , uj−1}. By this definition
and (5), we have

(6) deg−
Htj

(v, uj) ≥ degHtj
(v, uj) − (j − 1) ≥ (12 − γ)n− (j + 1).

We also have

(7) |H(v)| ≥
∑∆0

j=1
deg−

H
(v, uj)

which is the starting point of our estimates.
In view of (6) and (7), we would like to compare the degrees deg−

Htj

(v, uj) and

deg−
H

(v, uj). Clearly, Htj ⊇ H. But which triplets are counted by the difference

deg−
Htj

(v, uj) − deg−
H

(v, uj) ?

The answer comes from looking at the neighbors of uj in Stj (see Figure 4).

Figure 4. Illustration to the proof of Claim 4

(pairs in Stj
are drawn with bold lines).

Suppose that we have {v, uj , w} ∈ H, w 6∈ {u1, . . . , uj−1}. Then the only reason
for {v, uj , w} 6∈ Htj is that the pair {uj , w} has been added to St′ at some earlier
step t′ < tj . However, there are at most

degStj
(uj) ≤ ∆(Stj ) ≤ ∆s
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such vertices w, and we conclude that

(8) deg−
Htj

(v, uj) − deg−
H

(v, uj) ≤ ∆s.

Using (4) and (6)–(8), we can finally bound |H(v)| as follows:

|H(v)|
(7)

≥
∑∆s

j=1
deg−

H
(v, uj)

(8)

≥
∑∆s

j=1
deg−

Htj

(v, uj) − ∆2
s

(6)

≥
(

1

2
− γ

)

n∆s −
∑∆s

j=1
(j + 1) − ∆2

s

=

(

1

2
− γ

)

n∆s −
(

∆s + 2

2

)

+ 1 − ∆2
s

(8)
>

(√
5 − 2

3
− γ

)

(

n− 1

2

)

(9)

for all γ > 0 and sufficiently large n.

Remark 1. The constant in Claim 4 and, consequently, in Theorem 1 cannot
be improved by our method. To see this, let us set ∆t = ∆s = xn and assume
that δ1(H) ≥ (c + γ)

(

n−1
2

)

. We want to minimize c so that the proof of Lemma
3 still goes through, that is, both inequalities (3) and (9) must be satisfied.
Omitting the lower order terms and ignoring γ, we can rewrite (3) and (9) as,
resp., c−3x+x2 ≥ 5

9 and x−3x2 ≥ 1− c. To minimize c means to determine the
min0<x<1 max{f(x), g(x)}, where f(x) = −x2 +3x+ 5

9 and g(x) = 3x2−x+1. It
turns out (see Figure 5) that this minimum is achieved at the smaller root of the
equation f(x) = g(x), that is, of the quadratic equation x2 − x + 1

9 = 0, which,

indeed, occurs at x0 = 1
2 −

√
5
6 (note that f(x0) = g(x0) = 5−

√
5

3 ).

1

2
−

√

5

6

1

6

1

2
+

√

5

6

5

6

5−
√

5

3

f(x)

g(x)

Figure 5. Graphical explanation of the constant 5−
√

5

3
.
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3. Proof of Theorem 1

The proofs of several results mentioned in the Introduction use the absorbing
path technique developed in [16, 18, 20]. An entire section in [15] is devoted
to a detailed outline of the proof from [18], and our proof of Theorem 1 below
follows that outline. In short, one begins with building an absorbing path A and
putting aside a small reservoir set R. (These preliminary steps will be presented
in Section 3.1.) Then a long cycle C containing A is created in the remaining
hypergraph (using the reservoir R to connect several paths together) and, finally,
utilizing the absorbing property of A, the cycle C is extended to a Hamiltonian
cycle. (These major steps are shown in Section 3.2, except for a proof of the
crucial Path Cover Lemma which is deferred to Section 4.)

3.1. Preliminary steps

Throughout, we implicitly assume that γ > 0 is arbitrarily small and n > n0,

where n0 = n0(γ) is sufficiently large. Let δ1(H) ≥
(

5−
√
5

3 + γ
)

(

n−1
2

)

and recall

that a pair of vertices u, v of H is large if degH(u, v) ≥ (12 + γ)n. We begin our
proof of Theorem 1 by applying Lemma 3 to H, obtaining a spanning subhyper-
graph H ′ with the property that each pair u, v of vertices is large in H ′ if and
only if degH′(u, v) > 0. From now on, by a large pair we will always mean a pair
large in H ′. Since δ(H ′) > 0, for each vertex u there are at least

(10) (12 + γ)n + 1 > 1
2n

large pairs {u, v}. In the next step we find an absorbing path A in H. (We do
not attempt to optimize the constants.) Comparing with the proof of Lemma
2.10 in [15], the only change appears in Claim 6 below, an analog of Claim 2.12
[15]—our lower bound on the number of absorbing 4-tuples is twice smaller than
there.

Lemma 5. There exists a path A in H (called absorbing) with |V (A)| ≤ γ3n
such that for every subset U ⊂ V \ V (A) of size |U | ≤ γ7n there is a path AU in

H with V (AU ) = V (A) ∪ U and such that AU has the same endpairs as A.

Proof. The path A will consist of disjoint absorbing 4-tuples taken from H ′ and
“glued together”, via Lemma 2, by disjoint paths of length six in H. We say that
a 4-tuple of distinct vertices (x1, x2, x3, x4) absorbs v in H ′ if {x1, x2, x3} ∈ H ′,
{x2, x3, x4} ∈ H ′, {x1, x2, v} ∈ H ′, {x2, v, x3} ∈ H ′, and {v, x3, x4} ∈ H ′ (see
Figure 6).

Claim 6. For every v ∈ V (H), there are at least γ2n4 4-tuples absorbing v in

H ′.
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Figure 6. An absorbing 4-tuple.

Proof. Given a vertex v, we choose x1 so that the pair {v, x1} is large, which can
be done, by (10), in more than n/2 ways. Then, for any neighbor x2 of {v, x1} in
H ′ (and there are more than n/2 of them), we know that the pairs {x1, x2} and
{v, x2} are also large. Consequently, there are at least 2γn vertices x3 such that
{x1, x2, x3} ∈ H ′ and {v, x2, x3} ∈ H ′. Similarly, we argue that there are at least
2γn choices of x4. Altogether, we have at least (n/2)2(2γn)2 = γ2n4 4-tuples
absorbing v.

To finish the proof of Lemma 5, we select randomly a family F ′ of ordered 4-

tuples of distinct vertices of V , independently and with probability p = γ4

n3 . With
positive probability, F ′ satisfies:

• |F ′| ≤ 2n4p = 2γ4n,

• there are at most 17n7p2 pairs of intersecting 4-tuples in F ′ (because there
are at most 16n7 such pairs in V ).

• for every vertex v, by Claim 6, there are at least 1
2γ

2n4p 4-tuples in F ′

which absorb v in H ′.

By removing from F ′ all 4-tuples which do not absorb any vertex v as well as
one 4-tuple of each intersecting pair, we obtain a subfamily F such that

• |F| ≤ |F ′| = 2γ4n,

• the 4-tuples in F form a disjoint family of paths in H ′,

• for every vertex v, there are at least 1
2γ

2n4p− 17n7p2 ≥ γ7n 4-tuples in F
which absorb v in H ′.

Using Lemma 2, we connect all paths in F into one path A of length at most
6×2γ4n ≤ γ3n. Let F1, . . . , Ft, t ≤ 2γ4n, be the paths (of length 4) in F . Assume
that, for some i = 1, . . . , t− 1, we have already connected F1, . . . , Fi into a path
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Ai of length 6i − 2. Let Hi be the subhypergraph of H obtained by removing
from H all vertices of Ai along with all vertices of Fi+1 ∪ · · · ∪ Ft, except for one
endpair ei+1 of Fi+1 and the endpair ei of Fi which is also an endpair of Pi. Since

δ1(Hi) ≥ δ1(H) − 6tn ≥ δ1(H) − 12γ4n2 ≥ 7

8

(

n− 1

2

)

(the last inequality holding with a big margin) and

min{degHi
(ei), degHi

(ei+1)} ≥
(

1

2
+ γ

)

n− 2γ4n ≥
(

1

2
+

γ

2

)

n,

the assumptions of Lemma 2 are satisfied, and thus there is a path Pi of length
6 between ei and ei+1 in Hi. The concatenation of the paths Ai, Pi, and Fi+1

constitutes the path Ai+1. Finally, set A = At.
To see that A is indeed an absorbing path in H, consider an arbitrary subset

U ⊆ V \ V (A) of size |U | ≤ γ7n. Since for every v ∈ U there are at least γ7n
4-tuples Fi in A which absorb v, there is a one-to-one mapping f : U → {1, . . . , t}
such that Ff(v) absorbs v. Let (xv1, . . . , x

v
4) be the vertices of the path Ff(v). Then

the path obtained from A by replacing, for each v ∈ U , the edges {xv1, xv2, xv3}
and {xv2, xv3, xv4} with {xv1, xv2, v}, {xv2, v, xv3}, and {v, xv3, xv4}, is the desired path
AU .

The next step in the proof of Theorem 1 is to put aside a reservoir set R which
should be small, disjoint from the absorbing path A, quickly reachable from
any large pair, as well as the induced subhypergraph H[R] should satisfy the
assumptions of Lemma 2.

Lemma 7. There exists a set R ⊂ V \ V (A) such that

(a) 1
4γ

7n ≤ |R| ≤ 1
2γ

7n,

(b) for every large pair e in H ′, we have |NH′(e) ∩R| ≥ (12 + γ/2)|R|, and
(c) δ1(H[R]) ≥ 8

9

(|R|−1
2

)

.

Proof. Set p = 1
3γ

7 and select a binomial random subset R of V \ V (A) by
including to R every element of V \V (A) independently, with probability p. The
random variable |R| has a binomial distribution with expectation n′p, where

(11) (1 − γ3)n ≤ n′ = |V \ V (A)| ≤ n.

By Chebyshev’s inequality, with probability tending to 1 as n → ∞,

(12) |R| ∼ n′p,

and thus (a) holds.
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For every large pair e in H ′, the random variable |NH′(e) ∩R| is also binomially
distributed, with expectation at least

((

1
2 + γ

)

n− |V (A)|
)

p ≥
(

1
2 + γ − γ3

)

np.

Hence, by a standard application of Chernoff’s bound (simultaneously for all large
e), the random set R satisfies the condition of part (b) with probability tending
to 1 as n → ∞.

For part (c), fix a vertex v and consider a random variable Xv equal to the
number of pairs of vertices {u,w} such that {u,w} is an edge of the link graph
H(v) and {u,w} ⊆ R. We apply to Xv Janson’s inequality (see, e.g., [6], Theorem
2.14, page 31). We have

E(Xv) = |H(v)|p2 ≥ δ1(H)p2 ≥ 10

11

(

np− 1

2

)

,

and, using notation of [6], ∆ = Θ(n3), because ∆ is dominated by pairs of
intersecting edges of H(v). Thus,

P

(

Xv ≤ 9

10

(

np− 1

2

))

≤ exp{−Θ(n)},

and, recalling (11) and (12), with probability tending to 1 as n → ∞, for every v

Xv ≥ 9

10

(

np− 1

2

)

≥ 8

9

(|R| − 1

2

)

.

Consequently, the random set R also satisfies the condition of part (c). In sum-
mary, there exists a set R ⊂ V \V (A) which satisfies all three properties (a), (b),
and (c).

3.2. Major steps—the outline

To finish the proof of Theorem 1 we need to do three more things:

I. Build a collection of vertex-disjoint paths in H ′′ = H ′[V \(V (A)∪R)] which
cover all vertices of V (H ′′) except for a set T of at most 1

2γ
7n vertices.

II. Using the reservoir R, connect the paths obtained in Step I as well as the
absorbing path A to form a long cycle C in H, covering all vertices of V
except for a set U of at most γ7n vertices.

III. Absorb the set U of the leftover vertices into the cycle C to form a Hamil-
tonian cycle in H.
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See Figures 7–9 for an illustration of this outline.

Step I is the most challenging one and we devote to it the entire next section,
containing a proof of the following lemma.

Lemma 8 (Path Cover Lemma). For all β > 0 and ρ > 0 there exist integers n0

and L such that every 3-graph H with n > n0 vertices and δ(H) ≥
(

5
9 + β

) (

n−1
2

)

,

contains a family of at most L vertex-disjoint paths, covering at least (1 − ρ)n
vertices of H.

Note that

δ(H ′′) ≥ δ(H ′) − |V (A)|n− |R|n ≥
(

5
9 + γ/3

)

(

n− 1

2

)

.

Therefore, applying Lemma 8 to H ′′ with β = γ/3 and ρ = 1
2γ

7 yields the
conclusion of Step I.

Figure 7. Outline of the proof of Theorem 1: Step I.

Step II is quite straightforward and based on Lemma 2 and the properties of R
established in Lemma 7. Indeed, let Q1, . . . , Qℓ, ℓ ≤ L, be the paths obtained
in Lemma 8, and set Q0 = Qℓ+1 = A, for convenience. Suppose that for some
i ∈ {0, . . . , ℓ} we have already connected Q0, . . . , Qi into one path Πi using 6i
vertices of R. Let the endpairs of Πi be one endpair (a1, a2) of A and one endpair
(x1, x2) of Qi. Let (y1, y2) be an endpair of Qi+1 (if i = ℓ, we take yj = aj ,
j = 1, 2). Let Ri = R\V (Πi) be the set of |R|−6i remaining vertices of R. Since
|R| − |Ri| = 6i ≤ 6L = O(1), for every large pair e in H ′, we have

|NH′(e) ∩Ri| ≥ (12 + γ/2)|R| − 6L ≥ (12 + γ/3)|R|.

Hence, there exist x3, x4, y3, y4 ∈ Ri such that all four triples {x1, x2, x3}, {x2, x3,
x4}, {y1, y2, y3}, {y2, y3, y4} belong to H ′. Finally, note that

δ1(Ri) ≥ δ1(R) − 6Ln ≥ 8

9

(|R| − 1

2

)

− 6Ln ≥ 7

8

(|Ri| − 1

2

)

.
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Hence, we are in position to apply Lemma 2 (with γ/3) to H ′[Ri] and find a path
Si of length 6 which connects in Ri the large pairs (x3, x4) and (y3, y4). If i < ℓ,
the paths Πi, Si, and Qi+1, together with the edges {x1, x2, x3}, {x2, x3, x4}, {y1,
y2, y3}, {y2, y3, y4} form the path Πi+1. If i = ℓ, they form the desired cycle C.

Figure 8. Outline of the proof of Theorem 1: Step II.

Step III follows immediately from the definition of the absorbing path given in
the statement of Lemma 5. Indeed, let U = V \ V (C), where C is the long
cycle obtained in Step II. Then |U | ≤ γ7n and there exists a path AU such that
V (AU ) = V (A) ∪U and AU has the same endpairs as A. Hence, one can replace
A with AU in C obtaining a Hamiltonian cycle in H.

Figure 9. Outline of the proof of Theorem 1: Step III.

4. Path Cover Lemma

In this section we complete the proof of Theorem 1 by proving Lemma 8 stated
at the end of the previous section. In doing so we will follow closely the proof of
Lemma 2.2 from [18].

The proof of Lemma 8 relies on modifications of a couple of claims proved or
stated in [18] for general k (Claims 4.2–4.4 there). Claim 4.5 in [18] is replaced
by the result from [4] giving a Dirac threshold for perfect matchings in 3-graphs
(Theorem 12 below).
A 3-graph H is 3-partite if there is a partition V (H) = V1 ∪ V2 ∪ V3 such that
every edge of H intersects each set Vi in precisely one vertex. A 3-partite 3-graph
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will be called here a (3, 3)-graph. If, in addition, the vertex partition satisfies

|V1| ≤ |V2| ≤ |V3| ≤ |V1| + 1,

then the (3, 3)-graph will be called equitable. Given a 3-graph H and three non-
empty, disjoint subsets Ai ⊂ V (H), i = 1, . . . , 3, we define eH(A1, A2, A3) to be
the number of edges in H with one vertex in each Ai, and the density of H with
respect to (A1, A2, A3) as

dH(A1, A2, A3) =
eH(A1, A2, A3)

|A1||A2||A3|
.

For a (3, 3)-graph H, we will write dH for dH(V1, V2, V3) and call it the density

of H.

We say that a (3, 3)-graph H is ε-regular if for all Ai ⊆ Vi with |Ai| ≥ ε|Vi|,
i = 1, 2, 3, we have

|dH(A1, A2, A3) − dH | ≤ ε.

Claim 9 [18]. For all 0 < ε < α < 1, every ε-regular, equitable (3, 3)-graph H
on n vertices, n sufficiently large, and with density dH ≥ α, contains a family Q
of vertex-disjoint paths such that for each P ∈ Q we have |V (P )| ≥ ε(α − ε)n/3
and

∑

P∈Q |V (P )| ≥ (1 − 2ε)n.

Claim 10 (Weak regularity lemma for 3-graphs). For all ε > 0 and every integer

t0 there exist T0 and n0 such that the following holds. For every 3-graph H on

n > n0 vertices there is, for some t0 ≤ t ≤ T0, a partition V (H) = V1 ∪ · · · ∪ Vt

such that |V1| ≤ |V2| ≤ · · · ≤ |Vt| ≤ |V1| + 1 and for all but less than ε
(

t
3

)

triplets

of partition classes {Vi1 , Vi2 , Vi3}, the induced (3, 3)-graph H[Vi1 , Vi2 , Vi3 ] of H is

ε-regular.

Given a partition like in Claim 10, we refer to the sets Vi as clusters, and define the
cluster 3-graph K on the vertex set [t] = {1, . . . , t} whose edges are all 3-element
sets of indices {i1, i2, i3} such that dH(Vi1 , Vi2 , Vi3) ≥ β

4 and H[Vi1 , Vi2 , Vi3 ] is
ε-regular. Thus, K is the intersection

(13) K = D ∩R(ε)

of two 3-graphs:

• D—consisting of all sets {i1, i2, i3} ⊂ [t] such that dH(Vi1 , Vi2 , Vi3) ≥ β
4 ,

and

• R(ε)—consisting of all sets {i1, i2, i3} ⊂ [t] such that H[Vi1 , Vi2 , Vi3 ] is ε-
regular.
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Claim 11. If H is a 3-graph with n > n0 vertices and δ(H) ≥
(

5
9 + β

) (

n−1
2

)

,

ε > 0, t ≥ 12/β, V (H) = V1 ∪ · · · ∪ Vt is a partition as in Claim 10, and K
is the cluster 3-graph defined above, then the number of vertices w ∈ [t] with

degK(w) ≥ (59 + β/2 −√
ε)
(

t−1
2

)

is at least (1 −√
ε)t.

Proof. For clarity, we assume that t divides n and thus, for each w = 1, . . . , t,
we have |Vw| = n/t. For every vertex w ∈ K, let Xw be the number of edges of
H with one vertex in Vw and the other two vertices in two different clusters, Vx

and Vy, such that {x, y, w} ∈ D. That is,

Xw =
∑

{x,y}∈ND(w)
|H[Vw, Vx, Vy]|.

Then, on the one hand,
Xw ≤ degD(w)(n/t)3,

while, on the other hand,

Xw ≥ n

t

(

5

9
+ β

)(

n− 1

2

)

− 3

(

n/t

3

)

− 3(t− 1)

(

n/t

2

)

n

t
− β

4

(

t− 1

2

)

(n/t)3.

Above, the first term is a lower bound on the number of edges of H with at least
one vertex in Vw, except that the edges with two (three) vertices in Vw are counted
twice (three times). We then subtract upper bounds on these exceptional edges,
2(t− 1)

(

n/t
2

)

n
t and 3

(

n/t
3

)

, respectively. In addition, we subtract (t− 1)
(

n/t
2

)

n
t , an

upper bound on the number of edges with one vertex in Vw and two other vertices
in one other cluster. Finally, we subtract the edges in all subgraphs H[Vw, Vx, Vy]
with {w, x, y} 6∈ D. Observe that

3

(

n/t

3

)

≤ 1

t2
n

t

(

n− 1

2

)

and

3(t− 1)

(

n/t

2

)

n

t
≤ 3

t− 1

t2
n

t

(

n− 1

2

)

.

Also,
β

4

(

t− 1

2

)

(n/t)3 ≤ β

4

n

t

(

n− 1

2

)

.

Hence,

Xw ≥ n

t

(

5

9
+ β − 3

t
− β

4

)(

n− 1

2

)

≥ n

t

(

5

9
+

β

2

)(

n− 1

2

)

and, consequently,

degD(w) ≥
(

5

9
+

β

2

)

(

n−1
2

)

(n/t)2
≥
(

5

9
+

β

2

)(

t− 1

2

)

.
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Since the number of irregular triples in K satisfies |R(ε)| < ε
(

t
3

)

, at most
√
εt

vertices w ∈ K have deg
R(ε)

(w) ≥ √
ε
(

t−1
2

)

. The claim follows.

The last, but not least, ingredient of our proof of Lemma 8 is the following result
about the existence of perfect matchings in 3-graphs with high minimum degree.
As we are going to apply it to the cluster 3-graph, we change notation for the
number of vertices from n to t.

Theorem 12 [4]. For every β > 0 there exists t1 such that every 3-graph H with

t ≥ t1 vertices, 3|t, and with δ(H) ≥ (59 + β)
(

t−1
2

)

contains a perfect matching.

Now we can prove Lemma 8. Given β and ρ, choose ε ≤ 1
4 so that,

(14)
β

6
− 3

√
ε ≥ 0

and

(15) 2ε +
√
ε ≤ ρ.

Set also
t0 = max{2t1(β/3), 12/β},

where t1 = t1(β/3) is determined via Theorem 12. Let n0 and T0 be the constants
determined by ε and t0 via the weak regularity lemma for hypergraphs (Claim
10). We will prove Lemma 8 with this n0 and

L =
T0

ε
(

β
4 − ε

) .

Apply Claim 10 to H with the above ε and t0, obtaining a partition as described
in that claim. (Assume again that t|n.) Let K be the cluster 3-graph defined
prior to Claim 11 and let W ⊆ [t] be the set of those clusters w of K for which

degK(w) ≥
(

5

9
+

β

2
−√

ε

)(

t− 1

2

)

.

Since t ≥ t0 ≥ 12/β, by Claim 11 we have that t′ := |W | ≥ (1 − √
ε)t. Define

K ′ = K[W ] and observe that, by (14),

δ(K ′) ≥
(

5

9
+

β

2
−√

ε

)(

t− 1

2

)

−√
εt(t− 1) ≥

(

5

9
+

β

3

)(

t′ − 1

2

)

.

Note also that

t′ ≥ (1 −√
ε)t ≥ (1 −√

ε)t0 ≥ 2(1 −√
ε)t1 ≥ t1
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(here we use the assumption ε ≤ 1
4).

Thus, we are in position to apply Theorem 12 to K ′ and conclude that there is a
perfect matching M in K ′ (we assume that 3|t′). For every edge e = {x, y, z} ∈
M , let

He = H[Vx, Vy, Vz].

Recalling that |V (He)| = 3(n/t), apply Claim 9 to each He, with the above ε and
α = β

4 . As an outcome, we obtain a family Pe of paths such that for each P ∈ Pe

(16) |V (P )| ≥ ε

3

(

β

4
− ε

)

|V (He)| = ε

(

β

4
− ε

)

n

t
:= l,

and
∑

P∈Pe

|V (P )| ≥ (1 − 2ε)|V (He)|

(see Figure 10). Consider the union of all these families, P =
⋃

e∈M Pe. Since,
clearly, |M | ≤ t/3, and at most

√
εn vertices of H are not covered by the clusters

of M , using (15), we conclude that P covers all but at most

|M | × 2ε|V (He)| +
√
εn = |M | × 6ε(n/t) +

√
εn ≤

(

2ε +
√
ε
)

n ≤ ρn

vertices of H. Moreover, since by (16) each path in P has length at least l and
t ≤ T0, we have

|P| ≤ n/l =
t

ε
(

β
4 − ε

) ≤ L.

This completes the proof of Lemma 8.

Figure 10. Illustration to the proof of Lemma 8.

5. Final comments

As we have tried to explain in Remark 1 at the end of Section 2, our method

cannot be stretched out to yield a bound on h21(n) better than 5−
√
5

3

(

n−1
2

)

∼
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0.92
(

n−1
2

)

. However, recently, together with Schacht and Szemerédi, we have been
trying to improve this bound by applying other variants of Lemmas 1 and 2. More
specifically, we redefine a large pair to have degree just at least (1/3 + γ)n, and
apply “the shaving procedure” only to the edges with all three pairs small. This
approach shows the potential to reduce the bound to approximately 0.8

(

n−1
2

)

,

still not quite satisfactory in view of the lower bound of 5
9

(

n−1
2

)

.
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[8] P. Keevash, D. Kühn, R. Mycroft and D. Osthus, Loose Hamilton cycles in hyper-

graphs , Discrete Math. 311 (2011) 544–559.
doi:10.1016/j.disc.2010.11.013

[9] I. Khan, Perfect matching in 3-uniform hypergraphs with large vertex degree, SIAM
J. Discrete Math. 27 (2013) 1021–1039.
doi:10.1137/10080796X
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