Upper bounds on the minimum size of Hamilton saturated hypergraphs

Andrzej Ruciński*
Department of Discrete Mathematics
Adam Mickiewicz University
Poznań, Poland
rucinski@amu.edu.pl

Andrzej Żak ${ }^{\dagger}$
Faculty of Applied Mathematics
AGH University of Science and Technology
Kraków, Poland
zakandrz@agh.edu.pl

Submitted: May 11, 2015; Accepted: Oct 11, 2016; Published: Oct 28, 2016
Mathematics Subject Classifications: 05C65

Abstract

For $1 \leqslant \ell<k$, an ℓ-overlapping k-cycle is a k-uniform hypergraph in which, for some cyclic vertex ordering, every edge consists of k consecutive vertices and every two consecutive edges share exactly ℓ vertices.

A k-uniform hypergraph H is ℓ-Hamiltonian saturated if H does not contain an ℓ-overlapping Hamiltonian k-cycle but every hypergraph obtained from H by adding one edge does contain such a cycle. Let $\operatorname{sat}(n, k, \ell)$ be the smallest number of edges in an ℓ-Hamiltonian saturated k-uniform hypergraph on n vertices. In the case of graphs Clark and Entringer showed in 1983 that $\operatorname{sat}(n, 2,1)=\left\lceil\frac{3 n}{2}\right\rceil$. The present authors proved that for $k \geqslant 3$ and $\ell=1$, as well as for all $0.8 k \leqslant \ell \leqslant k-1$, $\operatorname{sat}(n, k, \ell)=\Theta\left(n^{\ell}\right)$. In this paper we prove two upper bounds which cover the remaining range of ℓ. The first, quite technical one, restricted to $\ell \geqslant \frac{k+1}{2}$, implies in particular that for $\ell=\frac{2}{3} k$ and $\ell=\frac{3}{4} k$ we have $\operatorname{sat}(n, k, \ell)=O\left(n^{\ell+1}\right)$. Our main result provides an upper bound $\operatorname{sat}(n, k, \ell)=O\left(n^{(k+\ell) / 2}\right)$ valid for all k and ℓ. In the smallest open case we improve it further to $\operatorname{sat}(n, 4,2)=O\left(n^{14 / 5}\right)$.

1 Introduction

A hypergraph H is a pair $H=(V, E)$ where V is a set of elements called vertices, and E is a set of non-empty subsets of V called edges. If every edge of H has exactly k vertices, then H is called a k-uniform hypergraph or a k-graph. In what follows we will often identify H with its set of edges.

[^0]Given integers $1 \leqslant \ell<k$, we define an ℓ-overlapping k-cycle as a k-graph in which, for some cyclic ordering of its vertices, every edge consists of k consecutive vertices, and every two consecutive edges (in the natural ordering of the edges induced by the ordering of the vertices) share exactly ℓ vertices. The notion of an ℓ-overlapping k-path is defined similarly, that is, with vertices ordered v_{1}, \ldots, v_{s}, the edges of the path are $\left\{v_{1}, \ldots, v_{k}\right\},\left\{v_{k-\ell+1}, \ldots, v_{k+\ell}\right\}, \ldots,\left\{v_{s-k+1}, \ldots, v_{s}\right\}$, Note that the number of edges of an ℓ-overlapping k-cycle with s vertices is $s /(k-\ell$) (and thus, s is divisible by $k-\ell$). Similarly, it can be easily seen that the number of vertices s of an ℓ-overlapping k-path equals ℓ modulo $k-\ell$.

We denote an ℓ-overlapping k-cycle on s vertices by $C_{s}^{(k, \ell)}$. We further denote by $g:=g(k, \ell)$ the number of vertices between any two consecutive disjoint edges belonging to an ℓ-overlapping path (or cycle) and notice that

$$
\begin{equation*}
0 \leqslant g=\left\lceil\frac{k}{k-\ell}\right\rceil(k-\ell)-k<k-\ell<k \tag{1}
\end{equation*}
$$

and that $g=0$ if and only if $k-\ell$ divides k.
An ℓ-overlapping Hamiltonian k-cycle in a n-vertex k-graph H is defined as any subhypergraph of H isomorphic to $C_{n}^{(k, \ell)}$. If H contains an ℓ-overlapping Hamiltonian k-cycle then H itself is called ℓ-Hamiltonian.

Given a k-graph H and a k-element set $e \in H^{c}$, where $H^{c}=\binom{V}{k} \backslash H$ is the complement of H, we denote by $H+e$ the hypergraph obtained from H by adding e to its edge set. A k-graph H is ℓ-Hamiltonian saturated, $1 \leqslant \ell \leqslant k-1$, if H is not ℓ-Hamiltonian but for every $e \in H^{c}$ the k-graph $H+e$ is such. The largest number of edges in an ℓ-Hamiltonian saturated k-graph on n vertices is called the Turán number for the cycle $C_{n}^{(k, \ell)}$. In [2] this number has been determined in terms of the Turán number of a $(k-1)$-uniform path with a constant number of vertices.

In this paper we are interested in the other extreme. For n divisible by $k-\ell$, let $\operatorname{sat}(n, k, \ell)$ be the smallest number of edges in an ℓ-Hamiltonian saturated k-graph on n vertices. In the case of graphs, Clark and Entringer proved in 1983 that $\operatorname{sat}(n, 2,1)=\left\lceil\frac{3 n}{2}\right\rceil$ for $n \geqslant 52$.

For k-graphs with $k \geqslant 3$ the problem was first mentioned in [3, 4]. It seems to be quite hard to obtain such precise results as for graphs. Therefore, the emphasis has been put on the order of magnitude of $\operatorname{sat}(n, k, \ell)$. The present authors proved in [5] that for $k \geqslant 3$ and $\ell=1$, as well as for all $0.8 k \leqslant \ell \leqslant k-1$,

$$
\begin{equation*}
\operatorname{sat}(n, k, \ell)=\Theta\left(n^{\ell}\right) \tag{2}
\end{equation*}
$$

see also [6] for the case $\ell=k-1$. On the other hand, we have the easy lower bound ([5, Prop. 2.1])

$$
\operatorname{sat}(n, k, \ell)=\Omega\left(n^{\ell}\right)
$$

The facts that (2) holds for very small and very large (with respect to k) values of ℓ and that no better lower bound is known suggest, as conjectured already in [5], that (2) holds for all $1 \leqslant \ell \leqslant k-1$ and $k \geqslant 2$.

Conjecture 1. For all $k \geqslant 2$ and $1 \leqslant \ell \leqslant k-1$,

$$
\operatorname{sat}(n, k, \ell)=O\left(n^{\ell}\right)
$$

Our first result provides an upper bound on $\operatorname{sat}(n, k, \ell)$ higher than the conjectured $O\left(n^{\ell}\right)$, but for a broader range of ℓ than in [5].
Theorem 1. For all $k \geqslant 3$ and $\ell \geqslant \frac{k+1}{2}$

$$
\operatorname{sat}(n, k, \ell)=O\left(n^{\ell+2 g+1}\right)
$$

Of course, this bound is good only when g is small, and when $g=0$ it is only by a factor of n worse than the conjectured optimum. All cases of Theorem 1 which are not covered by the result from [5], but for which $g=0$, are given in the following corollary.

Corollary 2. For every k divisible by three and $\ell=\frac{2}{3} k$, as well as for every k divisible by four and $\ell=\frac{3}{4} k$, we have sat $(n, k, \ell)=O\left(n^{\ell+1}\right)$.

In the remaining range of ℓ, that is, for $2 \leqslant \ell \leqslant k / 2$, nothing else than the trivial upper bound

$$
\operatorname{sat}(n, k, \ell)=O\left(n^{k}\right)
$$

have been known. Our main result in this paper provides a first, non-trivial, general upper bound on $\operatorname{sat}(n, k, \ell)$.
Theorem 3. For all $k \geqslant 3$ and $2 \leqslant \ell \leqslant k-1$,

$$
\operatorname{sat}(n, k, \ell)=O\left(n^{\left(k_{\ell}\right) / 2}\right)
$$

One consequence of Theorem 3, combined with the case $\ell=k-1$ of (2), is that for all ℓ and k we have

$$
\operatorname{sat}(n, k, \ell)=O\left(n^{k-1}\right)
$$

In view of Theorem 3, the bound in Theorem 1 is not overwritten only when $\ell+2 g+1 \leqslant$ $\frac{k+\ell-1}{2}$, equivalently, when $g \leqslant(k-\ell-1) / 4$. Theorems 1 and 3 are proved, respectively, in Sections 3 and 4. In the smallest open case, $k=4, \ell=2$, we improve Theorem 3 a bit by showing the following result in Section 5 .

Theorem 4. sat $(n, 4,2)=O\left(n^{14 / 5}\right)$.
Our proofs expand and refine a general approach to this type of problems first developed in [6] and modified in [5]. In short, we begin with constructing two k-graphs, H^{\prime} and $H^{\prime \prime}$, such that H^{\prime} is not ℓ-Hamiltonian, while $H^{\prime \prime} \supset H^{\prime}$ contains some "troublemaking" edges. Then we define H as a maximal non- ℓ-Hamiltonian k-graph satisfying $H^{\prime} \subseteq H \subseteq H^{\prime \prime}$. It then remains to show that for every $e \notin H, H+e$ is ℓ-Hamiltonian, but, what is crucial, in doing so we may restrict ourselves to $e \notin H^{\prime \prime}$.

In [6] the constructions of H^{\prime} and $H^{\prime \prime}$ were based on a special partition of the vertex set, while in [5] we used blow-ups of sparse Hamiltonian saturated graphs. In this paper we return to both these ideas: we use the approach from [5] in the proof of Theorem 1, and the approach from [6] in the proofs of Theorems 3 and 4.

2 Preliminaries

Our proofs utilize the following special construction of a k-graph. Given a partition of the vertex set $V=\bigcup_{i=1}^{h} U_{i}$, for a subset $S \subseteq V$, let

$$
\operatorname{tr}(S)=\left\{i: U_{i} \cap S \neq \varnothing\right\}
$$

and

$$
\min (S)=\min \{i: i \in \operatorname{tr}(S)\}=\min \left\{i: U_{i} \cap S \neq \varnothing\right\}
$$

Let

$$
H_{k, \ell}\left(U_{1}, \ldots, U_{h}\right):=H_{k, \ell}=\left\{e \in\binom{V}{k}:\left|e \cap U_{\min (e)}\right| \geqslant k-\ell+1\right\} .
$$

For further use, note that

$$
\begin{equation*}
|\operatorname{tr}(e)| \leqslant \ell \quad \text { for every } e \in H_{k, \ell} . \tag{3}
\end{equation*}
$$

For $i=1, \ldots, h$, let

$$
C_{i}=\left\{e \in H_{k, \ell}: \min (e)=i\right\} .
$$

Obviously, $H_{k, \ell}=C_{1} \cup \cdots \cup C_{h}$.
Define an ℓ-component of a k-graph H as a minimal subset of edges $C \subseteq H$ such that for all $e \in C$ and $f \in H \backslash C$, we have $|e \cap f|<\ell$.

Proposition 5. For each $i=1, \ldots, h$, the set C_{i} is an ℓ-component of $H_{k, \ell}$.
Proof. By the definition of $H_{k, \ell}$, for every $e \in C_{i}$ and $f \in C_{j}$, where $i<j$, we have $\left|e \cap U_{i}\right| \geqslant k-\ell+1$ and $f \cap U_{i}=\varnothing$, and so $|e \cap f|<\ell$. Moreover, for every $e \in C_{i}$ there is an $f \in C_{i}, f \neq e$ such that $|e \cap f| \geqslant k-1 \geqslant \ell$ (just switch one vertex without violating the membership in C_{i}), so that C_{i} satisfies the minimality condition in the definition of an ℓ-component.

Since every ℓ-overlapping k-path in a k-graph H must be entirely contained in one the ℓ-components of H, we have the following corollary of Proposition 5.
Corollary 6. For every ℓ-overlapping k-path P in $H_{k, \ell}$ there is an $i \in\{1, \ldots, h\}$ such that $P \subseteq C_{i}$, or equivalently, for every edge e of P, we have $\min (e)=i$.

We now investigate the maximum length of an ℓ-overlapping k-path in $C_{i}, i<h$, which traverses through exactly x vertices of U_{i}. Our next, purely combinatorial, result provides an easy upper bound, independent of ℓ. Given a positive integer x, let A and B be two disjoint sets, with $|A|=x$ and $|B|=\infty$. Let $\nu(x)=\max _{P}|V(P)|$, where the maximum is taken over all ℓ-overlapping paths P with $A \subset V(P) \subset A \cup B$ and $|e \cap A| \geqslant k-\ell+1$ for all $e \in P$.

Proposition 7. For every $x \geqslant k-2$, we have $\nu(x) \leqslant k x$.

Proof. Suppose there is a path P with $A \subset V(P) \subset A \cup B,|e \cap A| \geqslant k-\ell+1$ for all $e \in P$, and $|V(P)| \geqslant k x+1$. Let us view $V(P)$ as a binary sequence, where each vertex of A is replaced by symbol a and each vertex of $V(P) \cap B$ is replaced by symbol b. If there is a pair of consecutive symbols a in the sequence then, by averaging, there is a run (=a sequence of consecutive symbols) of at least

$$
\frac{(k-1) x+1}{x}>k-1,
$$

that is, of at least k symbols b. But then there is an edge of P with at most $k-\ell$ vertices of A - a contradiction. If, on the other hand, there are no consecutive symbols a in the sequence then, again by averaging, there is a run of at least

$$
\frac{(k-1) x+1}{x+1}>k-2,
$$

that is, of at least $k-1$ symbols b (here we use the assumption $x \geqslant k-2$). Thus, there is a segment $b \cdots b a b$ where the run of $b^{\prime} s$ is of length $k-1$. The first (from the left) edge of P whose leftmost end is in this run may have at most $k-\ell$ symbols $a-$ a contradiction, again.

We also have the following lower bound on $\nu(x)$.
Proposition 8. For every $x \geqslant(k-3)(k-1)$

$$
\nu(x) \geqslant x+\left\lfloor\frac{x}{k-1}\right\rfloor+3-k .
$$

Proof. Let a sequence Q begin with a vertex in B and then traverse, alternately, groups of $k-1$ vertices of A followed by one vertex of B until fewer than $k-1$ vertices of A are left. The remaining vertices of A are placed all at one end of Q. Clearly, every k-tuple of consecutive vertices of Q contains $k-1 \geqslant k-\ell+1$ vertices of A. To turn Q into an ℓ-overlapping path, the number of vertices of Q must equal ℓ modulo $k-\ell$. Therefore, we may be forced to drop up to $k-\ell-1 \leqslant k-2$ vertices of B from Q. This is possible as

$$
|Q \cap B|=\left\lfloor\frac{x}{k-1}\right\rfloor+1 \geqslant k-2
$$

by our assumption on x. The obtained path has the required properties and the claimed number of vertices.

Note that $\nu(x)$ is a nondecreasing function of x (just replace any vertex of B with a new vertex of A). Our next observation shows that it cannot increase too fast.
Proposition 9. For all $x \geqslant 1$ we have $\nu(x-1) \geqslant \nu(x)-k$.

Proof. Consider a longest path P of length $\nu(x)$ and remove its first (from the left) s vertices, where $\ell \leqslant s \leqslant k$ and $s=\nu(x) \bmod k-\ell$. As there must be a vertex of A among the first ℓ vertices of any edge, the remaining path P^{\prime} satisfies $x^{\prime}:=\left|V\left(P^{\prime}\right) \cap A\right| \leqslant x-1$ and, by the monotonicity of $\nu(x)$ we have

$$
\nu(x)-k \leqslant \nu(x)-s \leqslant \nu\left(x^{\prime}\right) \leqslant \nu(x-1) .
$$

Returning to the hypergraph $H_{k, \ell}$, Propositions 7-9 imply the following corollary.
Corollary 10. Let $i<h, k^{2} \leqslant x \leqslant\left|U_{i}\right|, A \subset U_{i},|A|=x$, and $B \subset \bigcup_{j>i} U_{j},|B| \geqslant$ $(k-1) x$. Then the length of a longest path P in C_{i} such that $A \subset V(P) \subset A \cup B$ equals $\nu(x)$. Moreover, we have $\nu(x)-k \leqslant \nu(x-1) \leqslant \nu(x)$ and

$$
\frac{k}{k-1} x-k<\nu(x) \leqslant k x .
$$

In addition to the basic construction $H_{k, \ell}$, the proof of Theorem 1 relies on the notion of a (hypergraph) blow-up of a graph which will be defined soon. First, however, we recall a simple fact about graphs proved in [5, Fact 2.2]. For a graph G, let $c(G)$ denote the number of components of G. Given a subset $T \subseteq V(G)$, let $G[T]$ be the subgraph of G induced by T.
Fact 11 ([5]). Let k, ℓ, and Δ be constants, and for $h=1,2, \ldots$, let G_{h} be a graph with h vertices and $\Delta\left(G_{h}\right) \leqslant \Delta$. Then the number of k-element subsets $T \subseteq V\left(G_{h}\right)$ with $c\left(G\left[T_{h}\right]\right) \leqslant \ell$ is $O\left(h^{\ell}\right)$.

Given a graph G and an integer sequence $\mathbf{a}=\left(a_{1}, \ldots, a_{h}\right)$, the \mathbf{a}-blow-up of G is the k-graph $H:=H[G]$ with

$$
\begin{aligned}
& V(H)=\bigcup_{i=1}^{h} U_{i}, \quad\left|U_{i}\right|=a_{i}, \\
& H=\bigcup_{i j \in G} K^{(k)}\left(U_{i} \cup U_{j}\right)
\end{aligned}
$$

where $K^{(k)}(U)$ is the complete k-graph on U and the sets U_{i} are pairwise disjoint. For a subset $S \subset V(H)$, let

$$
\operatorname{tr}(S)=\left\{i \in V(G): U_{i} \cap S \neq \varnothing\right\}
$$

Furthermore, set

$$
c(S)=c(G[\operatorname{tr}(S)]) .
$$

The following immediate corollary of Fact 11 has been already noted in [5, Cor. 2.3].
Corollary 12 ([5]). Let a_{1}, \ldots, a_{h}, k, ℓ, and Δ be constants. If $\Delta\left(G_{h}\right) \leqslant \Delta$ and $H_{h}=$ $H\left[G_{h}\right]$ is the a-blow-up of G_{h} then the number of k-element subsets $S \subseteq V\left(H_{h}\right)$ with $c(S) \leqslant \ell$ is $O\left(h^{\ell}\right)$.

In order to facilitate the reading of the paper, the most frequent notation has been summarized in Table 1.

$g(k, \ell)$	$=\left\lceil\frac{k}{k-\ell}\right\rceil(k-\ell)-k$
H	a k-graph
G	an auxiliary graph
$V(H)$	$=\bigcup_{i=1}^{h} U_{i}$
$V(G)$	$=\{1, \ldots, h\}$
n	$=\|V(H)\|$
$\operatorname{tr}(S)$	$=\left\{i: U_{i} \cap S \neq \varnothing\right\}$
$\min (S)$	$=\min \left\{i: S \cap U_{i} \neq \varnothing\right\}$
$\min _{2}(S)$	$=\min \left\{i:\left(S \backslash U_{\min (S)}\right) \cap U_{i} \neq \varnothing\right\}$
$c(G)$	the number of components of G
$c(S)$	$=c(G[\operatorname{tr}(S)])$
$H_{k, \ell}$	$=\left\{e \in\binom{V}{k}:\left\|e \cap U_{\min (e)}\right\| \geqslant k-\ell+1\right\}$.
C_{i}	$=\left\{e \in H_{k, \ell}: \min (e)=i\right\}$.
$\nu(x)$	$=\max \{\|V(P)\|: P$ is an ℓ-overlapping path with $\|V(P) \cap A\|=x$
$\quad$$\quad$ and $\|e \cap A\| \geqslant k-\ell+1$ for all $e \in P\}$.	

Table 1: Notation

3 Proof of Theorem 1

In this section we prove Theorem 1, where the construction of an ℓ-Hamiltonian saturated k-graph is based on a blow-up of a suitably chosen Hamiltonial saturated graph.

Our proof is a substantial modification of the proof of Theorem 1.1 in [5]. Specifically, we have made the range of ℓ in (7) broader (it used to be $2 k-\ell+1 \leqslant a_{i} \leqslant 4 \ell-2 k+1$) and, at the same time, we altered the definition of H_{2} (by introducing the cores \bar{U}_{i}). In what follows, we assume that

$$
\begin{equation*}
g \leqslant \frac{k-\ell-1}{4}, \tag{4}
\end{equation*}
$$

since otherwise $\ell+2 g+1 \geqslant(k+\ell) / 2$ and Theorem 1 follows from Theorem 3.
We begin with a technical inequality.
Proposition 13. If $\frac{k+1}{2} \leqslant \ell \leqslant k-1$ then $2 k-\ell-2 g-2 \leqslant 2 \ell-2$.
Proof. The inequality in question is equivalent to

$$
\begin{equation*}
3 \ell+2 g \geqslant 2 k, \tag{5}
\end{equation*}
$$

To prove (5), note that, by the assumptions on ℓ, there exists some integer $a \geqslant 1$ such that

$$
\frac{a k+1}{a+1} \leqslant \ell<\frac{(a+1) k+1}{(a+1)+1} \leqslant \frac{2 a k+1}{2 a+1} .
$$

Then, by the lower bound on ℓ,

$$
\begin{aligned}
g & =\left\lceil\frac{k}{k-\ell}\right\rceil(k-\ell)-k \geqslant\left\lceil\frac{k}{k-(a k+1) /(a+1)}\right\rceil(k-\ell)-k \\
& =\left\lceil\frac{k}{k-1}(a+1)\right\rceil(k-\ell)-k \geqslant(a+2)(k-\ell)-k .
\end{aligned}
$$

Hence, by the upper bound on ℓ, we finally have

$$
3 \ell+2 g \geqslant(2 a+2) k-(2 a+1) \ell>2 k-1,
$$

which implies (5).
It follows from Proposition 13, as in [5], that every sufficiently large integer n can be expressed as a sum

$$
\begin{equation*}
n=a_{1}+\cdots+a_{h}, \tag{6}
\end{equation*}
$$

for some h, where

$$
\begin{equation*}
2 k-\ell-2-2 g \leqslant a_{i} \leqslant 2 \ell-1, \quad i=1, \ldots, h . \tag{7}
\end{equation*}
$$

(This is because the range of a_{i} in (7) has at least two consecutive values.)
Fix a large integer n which is divisible by $(k-\ell)$ and let $\mathbf{a}=\left(a_{1}, \ldots, a_{h}\right)$, where the a_{i} 's and h are as in (7). Note that $n=\Theta(h)$. Let G_{h} be an h-vertex Hamiltonian saturated graph with $\Delta\left(G_{h}\right)=O(1)$, and let

$$
H_{1}=H\left[G_{h}\right]
$$

be the a-blow-up k-graph of G_{h} (see the definition in Section 2) with

$$
V=V\left(H_{1}\right)=\bigcup_{i=1}^{h} U_{i}, \text { where }\left|U_{i}\right|=a_{i}, \quad i=1, \ldots, h .
$$

Thus, by (6),

$$
|V|=n=\sum_{i=1}^{h} a_{i} .
$$

It is easy to check that (4) implies that $a_{i} \geqslant k-\ell$, for all $i=1, \ldots, h$. Fix a $(k-\ell)$-subset \bar{U}_{i} of $U_{i}, i=1, \ldots, h$, and let

$$
H_{2}=\left\{e \in\binom{V}{k}:\left|e \cap U_{\min (e)}\right| \geqslant k-l+1, e \supset \bar{U}_{\min (e)} \text { and } c(e) \geqslant g+2\right\} .
$$

Since $H_{2} \subseteq H_{k, \ell}$, by (3), for every $e \in H_{2}$ we have, in fact,

$$
\begin{equation*}
2 \leqslant g+2 \leqslant c(e) \leqslant|\operatorname{tr}(e)| \leqslant \ell \tag{8}
\end{equation*}
$$

(Note that (4) implies that, indeed, $g \leqslant \ell-2$, which guarantees that H_{2} is nonempty.) We have the following immediate consequence of the definition of H_{2} and Corollary 6.

Corollary 14. If P is a path in H_{2}, then there is $i \in\{1, \ldots, h\}$ such that for every $e \in P$ we have $\left|e \cap U_{i}\right| \geqslant k-\ell+1$ and $e \supset \bar{U}_{i}$. In particular, each path in H_{2} has at most $\left\lfloor\frac{k}{k-\ell}\right\rfloor$ edges.

Observe also that for each $e \in H_{1}$, the set $\operatorname{tr}(e)$ is either a vertex or an edge of G. Consequently, $c(e)=1$ and the k-graphs H_{1} and H_{2} are edge-disjoint. Set $H^{\prime}=H_{1} \cup H_{2}$

Lemma 15. H^{\prime} is not ℓ-Hamiltonian.
Proof. Suppose that H^{\prime} contains an ℓ-Hamiltonian k-cycle $C_{H}=\left(e_{1}, \ldots, e_{m}\right)$. Unlike in [5], the proof breaks only into two cases:
Case 1. $\boldsymbol{C}_{\boldsymbol{H}} \subseteq \boldsymbol{H}_{\mathbf{1}}$: We omit the proof in this case, as it is identical to Case 1 of the proof of Lemma 4.1 in [5] (Indeed that proof relied only on the assumption that $a_{i} \leqslant 2 \ell-1$.)

Case 2. $\boldsymbol{H}_{\mathbf{2}} \cap \boldsymbol{C}_{\boldsymbol{H}} \neq \varnothing$: Let (w.l.o.g.) e_{1}, \ldots, e_{s-1} be a maximal segment in C_{H} of consecutive edges from H_{2}. By Corollary $14, s-1 \leqslant\left\lfloor\frac{k}{k-\ell}\right\rfloor$ and there exists an index $i \in\{1, \ldots, h\}$ such that

$$
\begin{equation*}
e_{1} \cap e_{s-1} \supseteq \bar{U}_{i}, \quad \text { and thus } \quad\left|e_{1} \cap e_{s-1}\right| \geqslant\left|\bar{U}_{i}\right|=k-\ell . \tag{9}
\end{equation*}
$$

Let Z be the set of vertices that lie between e_{m} and e_{s} on C_{H}. Formally,

$$
Z=\left(\bigcup_{t=1}^{s-1} e_{t}\right) \backslash\left(e_{m} \cup e_{s}\right)
$$

Then $e_{1} \subseteq e_{m} \cup Z \cup e_{s}$ and, consequently,

$$
\begin{equation*}
\{i\} \subseteq \operatorname{tr}\left(e_{1}\right) \subseteq \operatorname{tr}\left(e_{m}\right) \cup \operatorname{tr}(Z) \cup \operatorname{tr}\left(e_{s}\right) \tag{10}
\end{equation*}
$$

What is more, $e_{m} \cap U_{i} \neq \varnothing$ and $e_{s} \cap U_{i} \neq \varnothing$. Since $e_{m} \in H_{1}$ and $e_{s} \in H_{1}$, by the definition of H_{1}, each of $\operatorname{tr}\left(e_{m}\right)$ and $\operatorname{tr}\left(e_{s}\right)$ is either the singleton $\{i\}$ or an edge of G containing vertex i. Hence, by (10), $c\left(e_{1}\right) \leqslant 1+|Z|$, which combined with the bound $g+2 \leqslant c\left(e_{1}\right)$ from the definition of H_{2}, yields

$$
\begin{equation*}
|Z| \geqslant g+1 \tag{11}
\end{equation*}
$$

This further implies that e_{m} and e_{s} are disjoint, but more importantly, that e_{1} and e_{s} are disjoint too (since e_{m} and e_{s} cannot be consecutive disjoint edges). Thus, $s \geqslant 3$ and

$$
\begin{equation*}
|Z| \leqslant 2(k-\ell)-\left|e_{1} \cap e_{s-1}\right| \leqslant k-\ell, \tag{12}
\end{equation*}
$$

by (9). Note, however, that due to the structure of ℓ-overlapping k-paths,

$$
\begin{equation*}
|Z|=g+t(k-\ell) \text { for some } t \geqslant 0 \tag{13}
\end{equation*}
$$

Therefore, by (13), (12) and (11), $|Z|=k-\ell$ (and $g=0$). Consequently, by (12), $\left|e_{1} \cap e_{s-1}\right|=k-\ell$, implying that, in fact, $e_{1} \cap e_{s-1}=Z=\bar{U}_{i}$. But then (10) becomes

$$
\{i\} \subseteq \operatorname{tr}\left(e_{1}\right) \subseteq \operatorname{tr}\left(e_{m}\right) \cup \operatorname{tr}\left(e_{s}\right)
$$

and hence, $c\left(e_{1}\right)=1$ - a contradiction with the definition of H_{2}.
Let

$$
H^{\prime \prime}=\left\{e \in\binom{V}{k}: c(e) \leqslant \ell+2 g+1\right\} .
$$

Recall that $H_{1}=H\left[G_{h}\right]$ is the a-blow-up k-graph of a Hamiltonian saturated h-vertex graph G_{h}. It means that for all $e \in H_{1}$ we have $c(e)=1$, while, by (8), for all $e \in H_{2}$ we have $c(e) \leqslant|\operatorname{tr}(e)| \leqslant \ell$. Thus, $H^{\prime}=H_{1} \cup H_{2} \subseteq H^{\prime \prime}$.

Finally, let H be a maximal non- ℓ-Hamiltonian k-graph on V such that $H^{\prime} \subseteq H \subseteq H^{\prime \prime}$. In view of Lemma 15, H does exist. By Corollary 12,

$$
\begin{equation*}
|H| \leqslant\left|H^{\prime \prime}\right|=O\left(n^{\ell+2 g+1}\right) \tag{14}
\end{equation*}
$$

Thus, to complete the proof of Theorem 1, it remains to show the following lemma.
Lemma 16. For every $e \in H^{c}, H+e$ is ℓ-Hamiltonian.
Proof. By the maximality of $H, H+e$ is ℓ-Hamiltonian for each $e \in H^{\prime \prime} \backslash H$. Hence, we may restrict ourselves only to $e \in\left(H^{\prime \prime}\right)^{c}$, that is, such that $c(e) \geqslant \ell+2 g+2$. Let us fix one such e. Let $j_{1}, j_{2}, \ldots, j_{\ell+2 g}, y$, and $x=\min (e)$ belong to $\ell+2 g+2$ different components of $G[\operatorname{tr}(e)]$ and satisfy

$$
\begin{equation*}
\min \left\{j_{1}, j_{2}, \ldots, j_{\ell+2 g}\right\}>y>x \tag{15}
\end{equation*}
$$

Let $r_{x}=\left|e \cap U_{x}\right|$ and $r_{y}=\left|e \cap U_{y}\right|$. Note that, since $|\operatorname{tr}(e)| \geqslant c(e) \geqslant \ell+2 g+2$,

$$
\begin{equation*}
\max \left\{r_{x}, r_{y}\right\} \leqslant \max _{1 \leqslant i \leqslant n}\left|e \cap U_{i}\right| \leqslant k-(|\operatorname{tr}(e)|-1) \leqslant k-\ell-2 g-1 . \tag{16}
\end{equation*}
$$

We will build an ℓ-overlapping Hamiltonian cycle C_{H} in $H+e$ using the Hamiltonian saturation of G_{h}. Let $\left(u_{1}, \ldots, u_{n}\right)$ be the vertices of V in the order as they will appear on the C_{H} under construction. Our goal is to define this ordering so that each segment of k consecutive vertices which begins at u_{i}, where $i \equiv 1(\bmod k-\ell)$, is an edge of $H+e$. We will denote by e_{1} the edge beginning at u_{1}, by e_{2} - the edge beginning at $u_{1+k-\ell}$ and so on, until the last edge e_{m} of C_{H} which begins at $u_{n-k+\ell+1}$, where $m=\frac{n}{k-\ell}$.

To achieve our goal, we will first construct an ℓ-overlapping path $P \subseteq H_{2}+e$, extending e in both directions, and using only the vertices of U_{x} and U_{y}, one type at each end of e. Then, we will connect the endsets of P by an ℓ-overlapping path $P^{\prime} \subseteq H_{1}$, covering all the remaining vertices and, thus, creating, together with P, an ℓ-overlapping Hamiltonian cycle in $H+e$. The construction of P^{\prime} will be facilitated by tracing a Hamiltonian path in G connecting x and y.

To construct P, let $e_{1}:=e$ and order the vertices of $e_{1}=\left(u_{1}, \ldots, u_{k}\right)$ so that the first r_{x} vertices belong to U_{x}, the last r_{y} vertices belong to U_{y}, and the $\ell-r_{y}$ vertices immediately preceding the r_{y} vertices of $U_{y} \cap e_{1}$ all belong to sets U_{j} with $j>y$. (We know from (15) that there are more than enough such vertices in e_{1}.) In other words, we
request that

$$
\begin{align*}
& \left\{u_{1}, \ldots, u_{r_{x}}\right\} \subset U_{x}, \tag{17}\\
& \left\{u_{k-r_{y}+1}, \ldots, u_{k}\right\} \subset U_{y} \tag{18}\\
& \min \left(\left\{u_{k-\ell+1}, \ldots, u_{k-r_{y}}\right\}\right)>y \tag{19}
\end{align*}
$$

The remaining vertices of e_{1} are labeled arbitrarily by $u_{r_{x}+1}, \ldots, u_{k-\ell}$.
Our plan is to extend e_{1} in either direction, but only for as long as the new edges still intersect e_{1}. This means that we will have in P precisely

$$
\kappa:=\left\lceil\frac{l}{k-\ell}\right\rceil
$$

new edges, and thus, precisely

$$
\kappa(k-\ell)=g+\ell
$$

new vertices on each side of e_{1}, where the last equality follows from (1).
Formally, we set

$$
V(P)=\left\{u_{n-\ell-g+1}, \ldots, u_{n}, u_{1}, \ldots, u_{k}, u_{k+1}, \ldots, u_{k+g+\ell}\right\}
$$

and

$$
E(P)=\left\{e_{1}\right\} \cup\left\{e_{m+1-i}: i=1, \ldots, \kappa\right\} \cup\left\{e_{1+i}: i=1, \ldots, \kappa\right\},
$$

where, recall, the edge e_{j} begins at the vertex $u_{1+(j-1)(k-\ell)}$.
We request that all vertices of P to the left of e_{1} belong to U_{x} and all vertices to the right of e_{1} belong to U_{y}, that is,

$$
\begin{equation*}
\left\{u_{n-\ell-g+1}, \ldots, u_{n}, u_{1}, \ldots, u_{r_{x}}\right\} \subseteq U_{x} \quad \text { and } \quad\left\{u_{k-r_{x}+1}, \ldots, u_{k}, u_{k+1} \ldots, u_{k+g+\ell}\right\} \subseteq U_{y} \tag{20}
\end{equation*}
$$

This is possible, since, by (16) and (7).

$$
\min \left(\left|U_{x} \backslash e\right|,\left|U_{y} \backslash e\right|\right) \geqslant 2 k-\ell-g-2-(k-\ell-2 g-1)=k+g-1 \geqslant \ell+g .
$$

We also request that

$$
\begin{equation*}
\left\{u_{n-k+\ell+1}, \ldots, u_{r_{x}}\right\} \supseteq \bar{U}_{x} \quad \text { and } \quad\left\{u_{k-r_{y}+1}, \ldots, u_{2 k-\ell}\right\} \supseteq \bar{U}_{y} . \tag{21}
\end{equation*}
$$

This can be easily accommodated, as each of these sets contains precisely $k-\ell$ vertices from outside of e_{1}. Note that P is, trivially, an ℓ-overlapping path in the complete k-graph on V. We will show that, in fact, $P \subseteq H_{2}+e$.

Suppose first that $m+1-\kappa \leqslant j \leqslant m$. Then, by the definition of $x, \min \left(e_{j}\right)=x$. By our construction (see (17), (20), and (21)), $\left|e_{j} \cap U_{x}\right| \geqslant k-\ell+1$ and $e_{j} \supseteq \bar{U}_{x}$. The same is true for e_{j} with $j=2, \ldots, \kappa+1$, if we replace x by y (see (18), (19),(20), and (21)).

To conclude that $P \subseteq H_{2}+e$, it remains to show that $c\left(e_{j}\right) \geqslant g+2$ for each $e_{j}, j \neq 1$. As, clearly, $\left|e_{j} \backslash e_{1}\right| \leqslant \ell+g$, we also have

$$
\begin{equation*}
\left|e_{1} \backslash e_{j}\right| \leqslant \ell+g \tag{22}
\end{equation*}
$$

Trivially, $c\left(e_{1}\right) \leqslant c\left(e_{1} \backslash e_{j}\right)+c\left(e_{1} \cap e_{j}\right)$. Moreover, $\operatorname{tr}\left(e_{j}\right)=\operatorname{tr}\left(e_{1} \cap e_{j}\right)$. Therefore, by the choice of $e=e_{1}$ and (22),

$$
c\left(e_{j}\right)=c\left(e_{1} \cap e_{j}\right) \geqslant c\left(e_{1}\right)-c\left(e_{1} \backslash e_{j}\right) \geqslant c\left(e_{1}\right)-\left|e_{1} \backslash e_{j}\right| \geqslant \ell+2 g+2-(\ell+g)=g+2 .
$$

Thus $e_{j} \in H_{2}$ for each $e_{j} \in P, j \neq 1$.
Now we will build the rest of C_{H} using only the edges of H_{1}. Recall that x and y belong to different components of $\operatorname{tr}(e)$ and, hence, $x y \notin G$. Therefore, by the Hamiltonian saturation of G, there is a Hamiltonian path $Q=\left(v_{1}=y, v_{2}, \ldots, v_{h-1}, v_{h}=x\right)$ from y to x in G. We connect the two ℓ-element endsets of P by an ℓ-overlapping path $P^{\prime}=\left(e_{\kappa+2}, \ldots, e_{m-\kappa}\right)$ in $H_{1} \subseteq H$ which, by tracing Q, "swallows" all the remaining $n-|V(P)|$ vertices of V.

Set $U_{v}^{\prime}=U_{v} \backslash V(P), v \in V(G)$, and

$$
R:=\bigcup_{v \in V(G)} U_{v}^{\prime} .
$$

Observe that

$$
|R|=n-|V(P)|=n-2 \kappa(k-\ell)-k=n-2(g+\ell)-k .
$$

Let us order the elements R so that all elements of $U_{v_{i}}^{\prime}$ precede all elements of $U_{v_{i+1}}^{\prime}$, for $i=1, \ldots, h-1$, and denote this ordering by $\left(u_{k+g+\ell+1}, \ldots, u_{n-g-\ell}\right)$. The vertex set of P^{\prime} is then defined as

$$
V\left(P^{\prime}\right)=\left\{u_{k+g+1}, \ldots, u_{k+g+\ell}, u_{k+g+\ell+1}, \ldots, u_{n-g-\ell}, u_{n-g-\ell+1}, \ldots, u_{n-g}\right\} .
$$

Note that for $v \notin\{x, y\}$, by (7) and (16),

$$
\left|U_{v}^{\prime}\right| \geqslant\left|U_{v}\right|-(k-\ell-2 g-1) \geqslant k-1 .
$$

Hence, every edge of P^{\prime} stretches over at most two sets U_{v} and each such two sets are always indexed by adjacent vertices of G. This implies that $P^{\prime} \subseteq H_{1}$.

4 Proof of Theorem 3

In this section we prove Theorem 3, where the construction of an ℓ-Hamiltonian saturated k-graph is based on a special partition of the vertex set into $q+1$ sets $U_{1}, \ldots, U_{q+1}(q$ to be chosen), and the associated with it notion of the hypergraph $H_{k, \ell}\left(U_{1}, \ldots, U_{q+1}\right)$, introduced at the beginning of Section 2.

Recall that the function $\nu(x)$ has been defined in Section 2. Given a large integer n divisible by $k-\ell$, choose integers $\alpha=\Theta\left(n^{1 / 2}\right), \beta=\Theta\left(n^{1 / 2}\right), p=\Theta\left(n^{1 / 2}\right)$, and

$$
\begin{equation*}
q=\left\lfloor\frac{p(k+2 g)+(p-1) \nu}{\alpha}\right\rfloor+2 \tag{23}
\end{equation*}
$$

where $g=g(k, \ell)$ is given by (1) and $\nu:=\nu(\alpha)$, such that

$$
\begin{gather*}
\alpha \geqslant 10 k^{3} p, \tag{24}\\
\beta \geqslant k \alpha
\end{gather*}
$$

and

$$
\begin{equation*}
n=(q-1) \alpha+\beta+p(k-2)+k-3 . \tag{25}
\end{equation*}
$$

To see that such a choice is feasible, one may set, for instance, $\alpha=\left\lceil 2 k^{2} \sqrt{n}\right\rceil$. Recall that, by Proposition $7, \alpha \leqslant \nu \leqslant k \alpha$. Next, choose $p=\lfloor n / \nu\rfloor-k-1$. Then, first of all, (24) holds. Furthermore, using (23) and the estimates $g \leqslant k, 2 p \geqslant k-3$, and $4 k p \leqslant \alpha$ among others, we can sandwich the quantity

$$
n-\beta=(q-1) \alpha+p(k-2)+k-3
$$

as follows:

$$
n-(k+3) \nu \leqslant \nu(p-1) \leqslant n-\beta \leqslant 4 k p+\alpha+n-(k+2) \nu \leqslant n-k \alpha .
$$

Thus, there exists an integer $\beta, k \alpha \leqslant \beta \leqslant(k+3) \alpha$, which satisfies (25). Note that, in particular, by (23) and Proposition 8,

$$
\begin{equation*}
q \geqslant p+2 k+1 . \tag{26}
\end{equation*}
$$

Let

$$
V=\bigcup_{i=1}^{q+1} U_{i},
$$

where

$$
\left|U_{i}\right|=\alpha \quad \text { for } \quad i=1, \ldots, q-1, \quad\left|U_{q}\right|=\beta \quad \text { and } \quad\left|U_{q+1}\right|=p(k-2)+k-3
$$

and all sets $U_{i}, i=1, \ldots, q+1$, are pairwise disjoint.
We begin our construction of the required ℓ-Hamiltonian saturated k-graph H, by letting

$$
H_{1}=H_{k, \ell}\left(U_{1}, \ldots, U_{q+1}\right) .
$$

Recall from Section 2 that H_{1} breaks naturally into $q+1 \ell$-components, that is, $H_{1}=$ $C_{1} \cup \cdots \cup C_{q+1}$. Thus, every path in H_{1} is entirely contained in some C_{i}, and, by Corollary 10 , for all $i \leqslant q-1$ such paths are no longer than $k \nu \leqslant k^{2} \alpha$. On the other hand, by the definition of C_{i}, the vertex set of every path contained in $C_{q} \cup C_{q+1}$ must be a subset of $U_{q} \cup U_{q+1}$. Therefore, in view of our assumptions on β, p and α, we have the following conclusion.

Corollary 17. The length of a longest path in H_{1} is $O(\sqrt{n})$. In particular, H_{1} is not ℓ-Hamiltonian.

Following the outline described in the Introduction, we build a k-graph H^{\prime} by slightly enriching H_{1}, but so that it still remains non- ℓ-Hamiltonian. Let

$$
\begin{equation*}
H_{2}=\left\{e \in\binom{V}{k}:\left|e \cap U_{q+1}\right| \geqslant k-2\right\} \tag{27}
\end{equation*}
$$

and $H^{\prime}=H_{1} \cup H_{2}$.
Lemma 18. H^{\prime} is not ℓ-Hamiltonian.
Proof. Suppose that C is an ℓ-overlapping Hamiltonian cycle in H^{\prime}. Let M be a maximal set of disjoint edges in $C \cap H_{2}$. By Corollary $17, M \neq \varnothing$. Set $t:=|M|$. Since

$$
\left|U_{q+1}\right|=p(k-2)+k-3<(p+1)(k-2),
$$

we have $t \leqslant p$.
From C we now extract t vertex disjoint paths, all contained in H_{1}, as follows. For every $e \in M$, denote by $N(e)$ the union of the set of vertices of e, the set of g consecutive vertices lying just before e, and the set of g consecutive vertices lying just after e (here, 'before' and 'after' refer to an arbitrarily fixed direction of traversing C). Let $W=$ $\bigcup_{e \in M} N(e)$. Then $C[V \backslash W]$ consists of at most t paths (we treat a nonempty set of fewer than k consecutive isolated vertices as a single trivial path). Observe that

$$
\begin{equation*}
|W| \leqslant t(k+2 g) \tag{28}
\end{equation*}
$$

Since each obtained path P is contained in H_{1}, either $\min (V(P)) \leqslant q-1$ or $V(P) \subseteq$ $U_{q} \cup U_{q+1}$. If all t paths are of the former kind, then their total number of vertices is at most $t \nu$, and otherwise, it is at most $(t-1) \nu+\left|U_{q}\right|+\left|U_{q+1}\right|$. Note that, since $\left|U_{q}\right|=\beta \geqslant k \alpha \geqslant \nu$, we have

$$
\begin{equation*}
\max \left\{t \nu,(t-1) \nu+\left|U_{q}\right|+\left|U_{q+1}\right|\right\} \leqslant(t-1) \nu+\left|U_{q}\right|+\left|U_{q+1}\right| . \tag{29}
\end{equation*}
$$

Finally, by (23), (28), and (29), and using $t \leqslant p$, we get

$$
\begin{aligned}
n=|V(C)| & \leqslant|W|+(t-1) \nu+\left|U_{q}\right|+\left|U_{q+1}\right| \\
& \leqslant p(k+2 g)+(p-1) \nu+\left|U_{q}\right|+\left|U_{q+1}\right| \\
& <(q-1) \alpha+\left|U_{q}\right|+\left|U_{q+1}\right|=n,
\end{aligned}
$$

which is a contradiction. Hence, there is no ℓ-overlapping Hamiltonian cycle in H^{\prime}.
Before we finalize our construction, we need one more piece of notation. For each $e \in\binom{V}{k}$ with $|\operatorname{tr}(e)| \geqslant 2$, let

$$
\begin{equation*}
\min _{2}(e)=\min \left\{i:\left(e \backslash U_{\min (e)}\right) \cap U_{i} \neq \varnothing\right\} . \tag{30}
\end{equation*}
$$

Finally, set

$$
H_{3}=\left\{e \in\binom{V}{k}:|\operatorname{tr}(e)| \geqslant 2 \quad \text { and } \quad \min _{2}(e) \geqslant q-2 k\right\}
$$

$$
H^{\prime \prime}=H_{1} \cup H_{2} \cup H_{3},
$$

and let H be a maximal non- ℓ-Hamiltonian k-graph such that $H^{\prime} \subseteq H \subseteq H^{\prime \prime}$. By Lemma 18 , such a k-graph H exists.
Fact 19.

$$
|H|=O\left(n^{(k+\ell) / 2}\right)
$$

Proof. By the definitions of H and $H^{\prime \prime}$,

$$
|H| \leqslant\left|H^{\prime \prime}\right| \leqslant\left|H_{1}\right|+\left|H_{2}\right|+\left|H_{3}\right| .
$$

Now, noticing that $\max _{1 \leqslant i \leqslant q+1}\left|U_{i}\right|=\beta$, we have

$$
\begin{aligned}
& \left|H_{1}\right| \leqslant \sum_{i=1}^{q+1}\binom{\left|U_{i}\right|}{k-\ell+1} \cdot\binom{n}{\ell-1} \leqslant(q+1) \cdot \beta^{k-\ell+1} \cdot n^{\ell-1}=O\left(n^{(k+\ell) / 2}\right) \\
& \left|H_{2}\right| \leqslant\binom{\left|U_{q}\right|}{k-2} \cdot\binom{n}{2} \leqslant \beta^{k-2} \cdot n^{2}=O\left(n^{(k+2) / 2}\right), \text { and } \\
& \left|H_{3}\right| \leqslant \sum_{i=1}^{q} \sum_{t=1}^{k-1}\binom{\left|U_{i}\right|}{t} \cdot\binom{\left|U_{q-2 k}\right|+\cdots+\left|U_{q+1}\right|}{k-t}=O\left(q \cdot \alpha^{t} \cdot \beta^{k-t}\right)=O\left(n^{(k+1) / 2}\right),
\end{aligned}
$$

where $i=\min (e)$ and $t=\left|e \cap U_{\min (e)}\right|$.
To complete the proof of Theorem 3, it remains to show the following lemma.
Lemma 20. For every $e \in\binom{V}{k} \backslash H$ the k-graph $H+e$ is ℓ-Hamiltonian.
Proof. Fix $e \in\binom{V}{k} \backslash H$. If $e \in H^{\prime \prime}$, then, by the definition of $H, H+e$ is ℓ-Hamiltonian. Therefore, we may assume that $e \notin H^{\prime \prime}$. This implies that $|\operatorname{tr}(e)| \geqslant 2$, since otherwise $e \in H_{1}$. Define

$$
x=\min (e) \quad \text { and } \quad y=\min _{2}(e) .
$$

Since $e \notin H_{1} \cup H_{3}$, we have $\left|U_{x} \cap e\right| \leqslant k-\ell$ and $x<y \leqslant q-2 k-1$.
Our ultimate goal is to construct in H an ℓ-overlapping Hamiltonian cycle C. Recalling (26), let $J=\left\{j_{1}, \ldots, j_{p-2}\right\}$ be the set of the $p-2$ smallest indices in the set $\{1, \ldots, q-$ $2 k-1\} \backslash\{x, y\}$. Further, let

$$
r_{i}=\left|e \cap U_{i}\right|, \quad i=1, \ldots, q+1 .
$$

Since $e \notin H_{2}$, we have $r_{q+1} \leqslant k-3$. Thus $\left|U_{q+1} \backslash e\right| \geqslant p(k-2)$. Let us now set aside p disjoint ($k-2$)-element subsets B_{1}, \ldots, B_{p} of $U_{q+1} \backslash e$ and let

$$
B=\bigcup_{i=1}^{p} B_{i} .
$$

Note that

$$
\begin{equation*}
\left|U_{q+1} \backslash(B \cup e)\right|=k-3-r_{q+1} \leqslant k . \tag{31}
\end{equation*}
$$

Furthermore, let us also put aside a set $Q=A_{q} \cup A_{q}^{\prime}$ of $2(g+1)$ elements of $U_{q} \backslash e$, where $\left|A_{q}\right|=\left|A_{q}^{\prime}\right|=g+1$. The vertices in B and Q will be used later in our construction.

First, however, we construct p vertex disjoint paths $P_{j_{1}}, \ldots, P_{j_{p-2}}, P_{x y}$ and P_{q}. Together, these p paths will contain all elements of V, except for some $k-\ell+g+1$ vertices of U_{x}, the same number of vertices of U_{y}, twice as many vertices of each $U_{j}, j \in J$, and except for the vertices in $B \cup Q$. Using these exceptional vertices, the paths will be connected by p 'bridges', made mostly of the edges of H_{2}, to form an ℓ-overlapping Hamiltonian cycle C in H.

Construction of $\boldsymbol{P}_{\boldsymbol{x y}}$. Order the vertices of e so that the set $e \cap U_{x}$ constitutes the leftmost segment of e, while the rightmost vertex of e belongs to U_{y}. Next, we will extend e in both directions (see Fig. 1). Let A_{x}^{\prime} be a set of arbitrary $k-\ell+g$ vertices of $U_{x} \backslash e$ and A_{y} be a set of arbitrary $k-\ell+g$ vertices of $U_{y} \backslash e$ (the reader should not worry, we will later construct sets A_{x} and A_{y}^{\prime} too). Let

$$
R=\bigcup_{i=q-2 k}^{q-1} U_{i} \backslash e
$$

Further, for each $z \in\{x, y\}$, let $P_{z} \subseteq C_{z}$ be a path containing precisely

$$
\alpha_{z}:=\alpha-r_{z}-(2 k-2 \ell+2 g+1)
$$

vertices of $U_{z} \backslash\left(e \cup A_{x}^{\prime} \cup A_{y}\right)$ and $\nu\left(\alpha_{z}\right)-\alpha_{z}$ vertices of R, where $V\left(P_{x}\right) \cap V\left(P_{y}\right)=\varnothing$. Since, by Proposition 7, each of P_{x} and P_{y} requires no more than $(k-1) \alpha$ vertices of R, while $|R| \geqslant 2 k \alpha-k$, we will not run out of the vertices of R.

To finish the construction of $P_{x y}$, we extend e

- to the left, by adding the set A_{x}^{\prime}, followed by P_{x}, and
- to the right, by adding the set A_{y}, followed by P_{y}.

Thus,

$$
V\left(P_{x y}\right)=V\left(P_{x}\right) \cup A_{x}^{\prime} \cup e \cup A_{y} \cup V\left(P_{y}\right) \subset U_{x} \cup U_{y} \cup e \cup R
$$

Set

$$
A_{x}=U_{x} \backslash V\left(P_{x y}\right) \quad \text { and } \quad A_{y}^{\prime}=U_{y} \backslash V\left(P_{x y}\right)
$$

and observe that

$$
\begin{equation*}
\left|A_{x}\right|=\left|A_{y}^{\prime}\right|=k-\ell+g+1 \tag{32}
\end{equation*}
$$

Fact 21.

$$
P_{x y} \subseteq H_{1}+e
$$

Proof. The path $P_{x y}$ consists, besides the edges of P_{x}, P_{y}, and e itself, also of a set A of $2\left\lceil\frac{k}{k-\ell}\right\rceil$ additional edges, $\left\lceil\frac{k}{k-\ell}\right\rceil$ on each side of e. These are precisely those edges of $P_{x y}$ which intersect the set $A_{x}^{\prime} \cup A_{y}$. Thus, to prove that $P_{x y} \subseteq H_{1}+e$, it remains to show that each edge from A belongs to H_{1}.

Figure 1: Construction of $P_{x y}$

Let us consider an edge e^{\prime} intersecting A_{x}^{\prime}. Obviously, $\min \left(e^{\prime}\right)=x$. Also, $\left|e^{\prime} \cap A_{x}^{\prime}\right| \geqslant$ $k-\ell$, and so $\left|e^{\prime} \cap U_{x}\right| \geqslant k-\ell$. Furthermore, if $\left|e^{\prime} \cap A_{x}^{\prime}\right|=k-\ell$ then either e^{\prime} contains also the leftmost vertex of e (which belongs to U_{x}), or $\left|e^{\prime} \cap V\left(P_{x}\right)\right|=\ell$. In the latter case, recall that each edge of P_{x} contains at least $k-\ell+1$ vertices from U_{x}, and consequently there is always a vertex form U_{x} among any ℓ vertices of such an edge. In either case, this implies that $\left|e^{\prime} \cap U_{x}\right| \geqslant k-\ell+1$, thus $e^{\prime} \in H_{1}$. If an edge e^{\prime} intersects A_{y} then, by the same argument, we also have $\left|e^{\prime} \cap U_{y}\right| \geqslant k-\ell+1$. Finally, note that $\min \left(e^{\prime}\right)=y$. Indeed, since $\left|U_{x} \cap e\right| \leqslant k-\ell$, none of the ℓ rightmost vertices of e is in U_{x}, and hence, we have $e^{\prime} \cap U_{x}=\varnothing$.

Construction of $\boldsymbol{P}_{\boldsymbol{q}}$. Let P_{q} be a longest path with $V\left(P_{q}\right) \subset U_{q} \backslash(e \cup Q)$. Clearly, at most $k-\ell-1$ vertices of U_{q} will be left out, that is,

$$
\begin{equation*}
\left.\mid U_{q} \backslash\left(V\left(P_{q}\right) \cup e \cup Q\right)\right) \mid \leqslant k-\ell-1 \leqslant k . \tag{33}
\end{equation*}
$$

Trivially, $P_{q} \subset H_{1}$.
Construction of $P_{j}, j \in J$. Set

$$
W:=\left(\bigcup_{i \in\{1, \ldots, q+1\} \backslash(J \cup\{x, y\})} U_{i}\right) \backslash\left(V\left(P_{x y}\right) \cup V\left(P_{q}\right) \cup B \cup Q \cup e\right),
$$

and, for each $j \in J$, let $P_{j} \subseteq C_{j} \subseteq H_{1}$ be a path with $V\left(P_{j}\right) \subseteq U_{j} \cup W$ which uses precisely

$$
\alpha_{j}:=\alpha-r_{j}-(2 k-2 \ell+2 g+2)
$$

vertices of $U_{j} \backslash e$ and as many as possible vertices from W (we maintain that all paths $P_{j}, j \in J$, are pairwise vertex-disjoint). Since $i>j$ for every $i \in[q+1] \backslash(J \cup\{x, y\})$, we do have $\min \left(V\left(P_{j}\right)\right)=j$. Also,

$$
\begin{equation*}
\left|U_{j} \backslash\left(V\left(P_{j}\right) \cup e\right)\right|=2(k-\ell+g+1) \quad \text { for each } j \in J . \tag{34}
\end{equation*}
$$

Split arbitrarily the set $U_{j} \backslash\left(V\left(P_{j}\right) \cup e\right)$ into two sets A_{q} and A_{q}^{\prime} of equal size $\left|A_{q}\right|=\left|A_{q}^{\prime}\right|=$ $k-\ell+g+1$.

Next, we perform crucial calculations showing that we have, indeed, used all the vertices of W, that is, there are no vertices outside the constructed paths except for those listed in $(32,34)$ and those put aside in $B \cup Q$.

Fact 22.

$$
W \subseteq \bigcup_{j \in J} V\left(P_{j}\right)
$$

Proof. We have, by the definition of $P_{x y}$, and by (31) and (33),

$$
\begin{aligned}
|W| & =(q-1-p) \alpha-\left|R \cap V\left(P_{x y}\right)\right|+\left|U_{q} \backslash\left(V\left(P_{q}\right) \cup e \cup Q\right)\right|+\left|U_{q+1} \backslash(B \cup e)\right|, \\
& \leqslant(q-1-p) \alpha-\left(\nu\left(\alpha_{x}\right)-\alpha_{x}\right)-\left(\nu\left(\alpha_{y}\right)-\alpha_{y}\right)+2 k .
\end{aligned}
$$

Recall that each path $P_{j}, j \in J$, may have the maximum length $\nu\left(\alpha_{j}\right)$, and thus cover up to $\nu\left(\alpha_{j}\right)-\alpha_{j}$ vertices of W. Therefore, to complete the proof it suffices to show that

$$
(q-1-p) \alpha-\left(\nu\left(\alpha_{x}\right)-\alpha_{x}\right)-\left(\nu\left(\alpha_{y}\right)-\alpha_{y}\right)+2 k \leqslant \sum_{j \in J}\left(\nu\left(\alpha_{j}\right)-\alpha_{j}\right),
$$

or, equivalently,

$$
\sum_{j \in J \cup\{x, y\}}\left(\nu\left(\alpha_{j}\right)-\alpha_{j}\right) \geqslant(q-1-p) \alpha+2 k .
$$

Note that for each $j \in J \cup\{x, y\}$

$$
\begin{equation*}
r_{j}+2 k-2 \ell+2 g+2 \leqslant 5 k \tag{35}
\end{equation*}
$$

Hence, by the monotonicity of the function $\nu(\cdot)$ and by Proposition 9, we have

$$
\nu\left(\alpha_{j}\right)-\alpha_{j} \geqslant \nu(\alpha-5 k)-\alpha \geqslant \nu-5 k^{2}-\alpha,
$$

and it remains to show that

$$
\begin{equation*}
p\left(\nu-5 k^{2}-\alpha\right) \geqslant(q-1-p) \alpha+2 k . \tag{36}
\end{equation*}
$$

To this end,

$$
\begin{aligned}
p\left(\nu-5 k^{2}\right)-p \alpha & \geqslant(p-1) \nu+(\alpha+\alpha /(k-1)-k)-5 k^{2} p-p \alpha \quad(\text { by Corollary 10) } \\
& \geqslant(p-1) \nu+\alpha+p(k+2 g)+2 k-p \alpha \quad(\text { by }(24)) \\
& \geqslant(q-1-p) \alpha+2 k \quad(\text { by }(23)) .
\end{aligned}
$$

(Since there is some margin in the above estimates, it means that not all the paths P_{j}, $j \in J$, are of maximum length.)

Now comes the final stage of our construction, where we glue together the paths $P_{j_{1}}, \ldots, P_{j_{p-2}}, P_{q}$, and $P_{x y}$, in this order, to form a Hamiltonian cycle C. We do it as indicated in Fig. 4, with the set A_{x} placed at the left end of $P_{x y}$, that is, next to the end of the path P_{x} (see Fig. 4).

Clearly, every edge of $\bigcup_{i=1}^{p-2} P_{j_{i}} \cup P_{x y} \cup P_{q}$ belongs to $H+e$. As the last ingredient of our proof of Theorem 3, we now show that every other edge of C belongs to $H_{1} \cup H_{2} \subseteq H$.

Figure 2: Construction of C

Fact 23.

$$
C \backslash\left(\bigcup_{i=1}^{p-2} P_{j_{i}} \cup P_{x y} \cup P_{q}\right) \subseteq H_{1} \cup H_{2}
$$

Proof. Let

$$
\mathcal{A}:=\left\{A_{j_{i}}, A_{j_{i}}^{\prime}: i=1, \ldots, p-2\right\} \cup\left\{A_{q}, A_{q}^{\prime}, A_{x}, A_{y}^{\prime}\right\} .
$$

Note that each edge of $C \backslash\left(\bigcup_{i=1}^{p-2} P_{j_{i}} \cup P_{x y} \cup P_{q}\right)$ intersects some set $A \in \mathcal{A}$. recall that between any two disjoint edges of C there are exactly $g+t(k-\ell)$ vertices on C, for some $t \geqslant 0$. In that case we say that the edge to the right (in some fixed ordering of C) t-follows the other edge. Let f_{1}, be the edge of C which 1-follows the rightmost edge of $P_{x y}$. Similarly, for $i=1, \ldots, p-2$, let f_{i+1} be the edge of C which 1-follows the rightmost edge of $P_{j_{i}}$. Finally, let f_{p} be the edge of C which 1-follows the rightmost edge of P_{q}, see Fig. 4. Note that for each $i=1, \ldots, p$, we have $B_{i} \subset f_{i}$, and thus $f_{i} \in H_{2}$. Furthermore, these are the only edges of C which intersect more than one set from \mathcal{A}.

Consider now some $f \in C, f \neq f_{i}$ intersecting $A_{j_{i}}$. Obviously $\min (f)=j_{i}$. Also $\left|f \cap A_{j_{i}}\right| \geqslant k-\ell$. However, if $\left|f \cap A_{j_{i}}\right|=k-\ell$, then $\left|f \cap V\left(P_{j_{i}}\right)\right|=\ell$. Recall that each edge of $P_{j_{i}}$ contains at least $k-\ell+1$ vertices of $U_{j_{i}}$, and consequently there is always a vertex of $U_{j_{i}}$ among any ℓ vertices of such an edge. This implies that $\left|f \cap U_{j_{i}}\right| \geqslant k-\ell+1$ and so, $f \in H_{1}$. The same argument works for any $f \in C$ intersecting some set $A \in \mathcal{A}$.

Thus, we have constructed an ℓ-overlapping Hamiltonian cycle C in $H+e$, which completes the proof of Lemma 20, which together with Fact 19, implies Theorem 3.

5 The smallest open case: $k=4$ and $\ell=2$

In this section we prove Theorem 4. Our ultimate goal is, given large even integer n, to construct a maximally non-2-Hamiltonian 4-graph H. In doing so we refine the technique used in the proof of Theorem 3.

Choose integers $\alpha=\Theta\left(n^{2 / 5}\right), \alpha \equiv 1 \bmod 3, \beta=O\left(n^{3 / 5}\right), p=\Theta\left(n^{3 / 5}\right)$, and

$$
\begin{equation*}
q=\left\lfloor\frac{4(\alpha-1)}{3 \alpha}(p-1)\right\rfloor+1 \tag{37}
\end{equation*}
$$

such that

$$
\begin{equation*}
n=q \alpha+3 p+\beta \tag{38}
\end{equation*}
$$

To see that such a choice is feasible, one may set, for instance, $\alpha=\left[n^{2 / 5}\right\rceil+\epsilon$ where $\epsilon \in\{0,1,2\}$ is such that $\alpha \equiv 1 \bmod 3$. Next choose $p=\left\lceil\frac{3 n}{4 \alpha+8}\right\rceil+1$. Then, using $(37,38)$ we have

$$
\begin{aligned}
n-\beta & >\frac{4}{3}(\alpha-1)(p-1) \geqslant n-\frac{3 n}{\alpha+2} \text { and } \\
n-\beta & \leqslant \frac{4}{3}(\alpha-1)(p-1)+\alpha+3 p=(p-2)\left(\frac{4}{3}(\alpha-1)+4\right)-\left(p-\frac{7}{3}(\alpha-1)-9\right) \\
& \leqslant n-\left(p-\frac{7}{3}(\alpha-1)-9\right),
\end{aligned}
$$

which shows that a choice of an appropriate β is possible.
Let $V=\bigcup_{i=1}^{q+1} U_{i}$, where $\left|U_{i}\right|=\alpha, i=1, \ldots, q$, while $\left|U_{q+1}\right|=3 p+\beta$, and all sets U_{i}, $i=1, \ldots, q+1$, are pairwise disjoint. Furthermore, let $G \cong p K_{3}+\beta K_{1}$ be a graph with vertex set $V(G)=U_{q+1}$ consisting of p vertex disjoint triangles and β isolated vertices.

We define H_{1} in the same way as in the general case, while H_{2} is defined smaller:

$$
\begin{align*}
& H_{1}=\left\{e \in\binom{V}{4}:\left|e \cap U_{\min (e)}\right| \geqslant 3\right\}, \\
& H_{2}=\left\{e \in\binom{V}{4}:\left|e \cap U_{q+1}\right|=2,|\operatorname{tr}(e)|=2 \text { and } G\left[e \cap U_{q+1}\right]=K_{2}\right\} . \tag{39}
\end{align*}
$$

The improvement of the upper bound on $\operatorname{sat}(n, 4,2)$ is possible mainly because in this particular case one can compute (quiet easily) the value of $\nu(x)$. Below we give only a (sharp) upper bound in some special case.

Proposition 24. Let $x \equiv 0 \bmod$ 3. Then

$$
\nu(x) \leqslant 4 \frac{x}{3} .
$$

Proof. Let $P=\left(e_{1}, \ldots, e_{r}\right), P \subseteq H_{1}$ and $\left|V(P) \cap U_{\min (V(P))}\right|=x$. Recall that each e_{i}, $i=1, \ldots, r$, contains at least 3 vertices from $U_{\min (V(P))}$. Since the e_{i} 's with odd indices are disjoint,

$$
\lceil r / 2\rceil \leqslant \frac{x}{3}
$$

If r is odd then

$$
|V(P)| \leqslant 4\lceil r / 2\rceil \leqslant 4 \frac{x}{3}
$$

and the statement follows. Similarly, if r is even and $r / 2 \leqslant \frac{x}{3}-1$ then

$$
|V(P)| \leqslant 2 r+2 \leqslant 4 \frac{x}{3}-2
$$

and the statement follows again. Suppose, finally, that $r / 2=\frac{x}{3}, r$ even. Since e_{r} contains at least 3 vertices from $U_{\min (V(P))}$, at least one of them is not in e_{r-1}, however there are no more available vertices in $U_{\min (V(P))}$, meaning that this case is vacuous.

Lemma 25. $H^{\prime}=H_{1} \cup H_{2}$ is not 2-Hamiltonian.
Proof. Suppose that C is a 2-overlapping Hamiltonian cycle in H^{\prime}. As before (cf. Corollary 17), one can easily show that H_{1} cannot be 2-Hamiltonian. Let M be a maximal set of edges in $C \cap H_{2}$ with the property that if $e_{1}, e_{2} \in M$ then $\left(e_{1} \cap e_{2}\right) \cap U_{q+1}=\varnothing$. In view of the above remark $M \neq \varnothing$. Set

$$
V_{2}=\bigcup_{e \in M} e \cap U_{q+1}
$$

Clearly, $t:=|M| \leqslant p$ and $\left|V_{2}\right|=2 t$. We divide C into t vertex disjoint paths P_{j}, $j=1, \ldots, t$, by cutting through the middle of every edge from M (we treat a set ot 2 consecutive isolated vertices as a single trivial path). More precisely, we keep all vertices in and take the edge set $C-M$. We number the obtained paths so that, for some $1 \leqslant s \leqslant t$, we have $\min \left(V\left(P_{j}\right)\right) \leqslant q$ for all $j=1, \ldots, s$ and $V\left(P_{j}\right) \subseteq U_{q+1}$ for all $j=s+1, \ldots, t$. Note that, because $M \neq \varnothing$, at least one path must be of the first kind, but possibly $s=t$. Let

$$
V_{2}^{\prime}=V_{2} \cap \bigcup_{j=1}^{s} V\left(P_{j}\right)
$$

Since $V\left(P_{j}\right) \subseteq U_{q+1}$ for all $j=s+1, \ldots, t$, we have

$$
\begin{equation*}
\sum_{j=s+1}^{t}\left|V\left(P_{j}\right)\right| \leqslant\left|U_{q+1}\right|-\left|V_{2}^{\prime}\right| \tag{40}
\end{equation*}
$$

Claim For every $j=1, \ldots, s$

$$
\left|V\left(P_{j}\right) \backslash V_{2}^{\prime}\right| \leqslant 4 \frac{\alpha-1}{3}
$$

Proof. If some P_{j} consists of only two vertices then the claim obviously holds. Thus, we may assume that each P_{j} is non-trivial. For $j \leqslant s$, consider the path $P_{j}=\left(e_{1}, \ldots, e_{r}\right)$. Let $e_{m} \in M$ with $\left|e_{m} \cap e_{1}\right|=2$. That is e_{m} precedes e_{1} on C. Similarly, let $e_{r+1} \in M$ with $\left|e_{r+1} \cap e_{r}\right|=2$, which means that e_{r+1} follows e_{r} on C.

Note that the edges from H_{2} can occur in P_{j} only at the ends. Thus $\left(e_{2}, \ldots, e_{r-1}\right)=$: $P_{j}^{\prime} \subset H_{1}$. If $e_{1} \in H_{1}$ then $\left|e_{1} \cap U_{\min \left(V\left(P_{j}\right)\right)}\right| \geqslant 3$, meaning that $\left|e_{m} \cap U_{\min \left(V\left(P_{j}\right)\right)}\right| \geqslant 1$. Thus, by the definition of $H_{2},\left|e_{m} \cap U_{\min \left(V\left(P_{j}\right)\right)}\right|=2$. If $e_{1} \in H_{2}$ then, since $e_{1} \notin M$, we have $\left|e_{1} \cap V_{2}^{\prime}\right| \in\{1,2\}$. If $\left|e_{1} \cap V_{2}^{\prime}\right|=1$ then $\left|e_{m} \cap U_{\min \left(V\left(P_{j}\right)\right)}\right| \geqslant 1$ because $\left|e_{m} \cap e_{1}\right|=2$ and $\left|\operatorname{tr}\left(e_{1}\right)\right|=2$. Thus, again, $\left|e_{m} \cap U_{\min \left(V\left(P_{j}\right)\right)}\right|=2$. To sum up

$$
\begin{equation*}
\text { if } e_{1} \in H_{1} \text { or }\left|e_{1} \cap V_{2}^{\prime}\right|=1 \text { then }\left|e_{m} \cap U_{\min \left(V\left(P_{j}\right)\right)}\right|=2 \text {. } \tag{41}
\end{equation*}
$$

The same holds for e_{r} and e_{r+1}

$$
\begin{equation*}
\text { if } e_{r} \in H_{1} \text { or }\left|e_{r} \cap V_{2}^{\prime}\right|=1 \text { then }\left|e_{r+1} \cap U_{\min \left(V\left(P_{j}\right)\right)}\right|=2 \text {. } \tag{42}
\end{equation*}
$$

Suppose first that the assumptions on both e_{1} and e_{r} from $(41,42)$, respectively, holds. Thus, $\left|V\left(P_{j}^{\prime}\right) \cap U_{\min \left(V\left(P_{j}\right)\right)}\right| \leqslant \alpha-4$. Since $\alpha-4 \equiv 0 \bmod 3$, by Proposition 24 and the monotonicity of the function ν,

$$
\left|V\left(P_{j}\right)\right|=\left|V\left(P_{j}^{\prime}\right)\right|+4 \leqslant 4 \frac{\alpha-4}{3}+4=4 \frac{\alpha-1}{3}
$$

and the claim follows.
Suppose now that $e_{1} \in H_{2}$ with $\left|e_{1} \cap V_{2}^{\prime}\right|=2$, while e_{r} satisfies the assumptions from (42). Let $P_{j}^{\prime \prime}$ be defined by $\left(e_{3}, \ldots, e_{r-1}\right)$. By the definition of $H_{2},\left|e_{1} \cap U_{\min \left(V\left(P_{j}\right)\right)}\right|=2$. This together with (42) implies that $\left|V\left(P_{j}^{\prime \prime}\right) \cap U_{\min \left(V\left(P_{j}\right)\right)}\right| \leqslant \alpha-4$. Hence, by Proposition 24 and the assumption on e_{1},

$$
\left|V\left(P_{j}\right) \backslash V_{2}^{\prime}\right|=\left(\left|V\left(P_{j}^{\prime \prime}\right)\right|+6\right)-2 \leqslant 4 \frac{\alpha-4}{3}+4=4 \frac{\alpha-1}{3}
$$

and the claim follows again.
The case when e_{1} satisfies the assumption of (41) and $\left|e_{r} \cap V_{2}^{\prime}\right|=2$, is analogous (with $\left.P_{j}^{\prime \prime}=\left(e_{2}, \ldots, e_{r-2}\right)\right)$.

Finally, if $\left|e_{1} \cap V_{2}^{\prime}\right|=2$ and $\left|e_{r} \cap V_{2}^{\prime}\right|=2$ then let $P_{j}^{\prime \prime}=\left(e_{3}, \ldots, e_{r-2}\right)$. Since $e_{1}, e_{r} \in H_{2}$ (and $e_{2}, e_{r-1} \in H_{1}$), we have $\left|e_{1} \cap U_{\min \left(V\left(P_{j}\right)\right)}\right|=2$ and $\left|e_{r} \cap U_{\min \left(V\left(P_{j}\right)\right)}\right|=2$. Therefore,

$$
\left|V\left(P_{j}\right) \backslash V_{2}^{\prime}\right|=\left(\left|V\left(P_{j}^{\prime \prime}\right)\right|+8\right)-4 \leqslant 4 \frac{\alpha-4}{3}+4=4 \frac{\alpha-1}{3}
$$

and the claim follows.
Returning to the proof of Lemma 25, notice that $\left|V_{2}^{\prime}\right| \leqslant\left|V_{2}\right|=2 t \leqslant 2 p$. Thus

$$
\begin{equation*}
\left|U_{q+1}\right|=3 p>\left|V_{2}^{\prime}\right|+4 \frac{\alpha-1}{3}, \tag{43}
\end{equation*}
$$

because $p \gg \alpha$. Recalling that $q>\frac{4(\alpha-1)}{3 \alpha}(p-1)$ and using the above claim as well as $(40,43)$, we finally argue that

$$
\begin{aligned}
n & =\left|V\left(C_{H}\right)\right|=\sum_{j=1}^{s}\left|V\left(P_{j}\right)\right|+\sum_{j=s+1}^{t}\left|V\left(P_{j}\right)\right| \\
& \leqslant \max \left\{\left|V_{2}^{\prime}\right|+4 t \frac{\alpha-1}{3},\left|V_{2}^{\prime}\right|+4(t-1) \frac{\alpha-1}{3}+\left|U_{q+1}\right|-\left|V_{2}^{\prime}\right|\right\}, \\
& \text { (according to wheather } s=t \text { or } s \leqslant t-1) \\
& =\left|V_{2}^{\prime}\right|+4(t-1) \frac{\alpha-1}{3}+\left|U_{q+1}\right|-\left|V_{2}^{\prime}\right| \quad \text { by (43) } \\
& \leqslant 4(p-1) \frac{\alpha-1}{3}+3 p<q \alpha+3 p \leqslant n,
\end{aligned}
$$

which is a contradiction. Hence, no 2-overlapping Hamiltonian cycle exists in $H_{1} \cup H_{2}$.

Let

$$
H_{3}=\left\{e \in\binom{V}{4}:|\operatorname{tr}(e)| \geqslant 2 \quad \text { and } \quad \min _{2}(e) \geqslant q\right\}
$$

be the same as in the proof of Theorem 3. Finally, let $H^{\prime \prime}=H_{1} \cup H_{2} \cup H_{3}$ and let H be a maximal non-2-Hamiltonian hypergraph such that $H^{\prime} \subseteq H \subseteq H^{\prime \prime}$. By Lemma 25, such a 4-graph exists.
Fact 26.

$$
|H|=O\left(n^{14 / 5}\right)
$$

Proof. By the definitions of H and $H^{\prime \prime}$,

$$
|H| \leqslant\left|H^{\prime \prime}\right| \leqslant\left|H_{1}\right|+\left|H_{2}\right|+\left|H_{3}\right| .
$$

Furthermore,

$$
\begin{aligned}
& \left|H_{1}\right|=O\left(q \cdot \alpha^{3} \cdot n+p^{4}\right)=O\left(n^{14 / 5}\right), \\
& \left|H_{2}\right|=O\left(3 p \cdot n \cdot n^{2 / 5}\right)=O\left(n^{2}\right) \text { and } \\
& \left|H_{3}\right|=O\left(n \cdot p^{3}\right)=O\left(n^{14 / 5}\right) .
\end{aligned}
$$

To complete the proof of Theorem 4, it remains to show the following lemma.
Lemma 27. For every $e \in\binom{V}{4} \backslash H$ the 4 -graph $H+e$ is 2 -Hamiltonian.
Proof. Let $e=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$, where $u_{j} \in U_{i_{j}}, j=1,2,3,4$, and $i_{1} \leqslant i_{2} \leqslant i_{3} \leqslant i_{4}$. As $e \notin H_{1}$, we have $|\operatorname{tr}(e)| \geqslant 2$. Let x and y stand for the two smallest different indices among $i_{1}, i_{2}, i_{3}, i_{4}$. Note that by the definition of $H, e \notin H_{3}$, and thus $y \leqslant q-1$.

Set $I=[q-1] \backslash\{x, y\}$, note that $p-2$ is (much) smaller than $q-3$, and let $J=$ $\left\{j_{1}, \ldots, j_{p-2}\right\}$ be the set of the $p-2$ smallest indices in I. We will construct p paths $P_{j_{1}}, \ldots, P_{j_{p-2}}, P_{x y}$, and P_{q+1}, such that for each $j \in J$, we have $V\left(P_{j}\right) \supseteq U_{j} \backslash e$,

$$
U_{x} \cup U_{y} \cup e \subseteq V\left(P_{x y}\right) \subset U_{x} \cup U_{y} \cup e \cup U_{q},
$$

and $V\left(P_{q+1}\right) \subset U_{q+1}$. Together, these paths will contain all vertices in V except some $2 p$ vertices of U_{q+1}. Using these exceptional vertices, the paths will be connected by p 'bridges' made of the edges of H_{2}, to form a 2-Hamiltonian cycle in H.

For the ease of notation assume that $x=q-2$ and $y=q-1$. Then $J=[p-2]$. To display the structure of each path we will use a shorthand notation j for any element of $U_{j}, j=1, \ldots, p-2, x, y, q, q+1$. Finally, we designate by $*$ each of the two unknown elements of $e=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ (other than x and y); recall that $u_{1} \in U_{x}$, while $\left\{u_{2}, u_{3}, u_{4}\right\} \subseteq \bigcup_{i=x}^{q+1} U_{i}$ and $\left|\left\{u_{2}, u_{3}, u_{4}\right\} \cap U_{x}\right| \leqslant 1$.

Construction of $P_{x y}$. We consider five cases with respect to the multiplicities of the vertices of V_{x} and V_{y} in e.

Case 1. In the case when $u_{1} \in U_{x}, u_{2} \in U_{y}$ and none of u_{3}, u_{4} belongs to U_{y}, the path $P_{x y}$ is constructed as follows:

$$
x x|x x| x x|q x| x x|q x| x x|\ldots| q x|x x \underbrace{|x *| * y \mid}_{e} y y| y q|y y| y q|\ldots| y y|y q| y y|y y| y y
$$

(the sequence begins with 3 blocks $|x x|$ followed by $(\alpha-7) / 3$ pairs $|q x| x x \mid$ and the edge e; the right side is constructed similarly with y replacing x and the blocks being arranged in the opposite order), where every element of $U_{x} \cup U_{y}$ appears exactly once, while $\frac{2}{3}(\alpha-7) \leqslant\left|V\left(P_{x y}\right) \cap U_{q}\right| \leqslant \frac{2}{3}(\alpha-7)+2$ or equivalently $\frac{2}{3}(\alpha-1)-4 \leqslant\left|V\left(P_{x y}\right) \cap U_{q}\right| \leqslant$ $\frac{2}{3}(\alpha-1)-2$ (recall that $\left.3 \mid(\alpha-1)\right)$. Note that each pair of consecutive blocks of size two forms an edge of H_{1} (except the middle pair $x * \mid * y$, which is just the edge e) and $\left|V\left(P_{x y}\right)\right|=2\left(4 \frac{\alpha-7}{3}+8\right)=\frac{8}{3}(\alpha-1)$.
Case 2. If $u_{1} \in U_{x}, u_{2} \in U_{y}$ and exactly one of u_{3}, u_{4} belongs to U_{y}, the path $P_{x y}$ is constructed as follows:

$$
x x|x x| x x|q x| x x|\ldots| q x|x x \underbrace{|x *| y y \mid}_{e} y q| y y|y q| \ldots|y y| y q|y y| y y .
$$

Again, $\left|V\left(P_{x y}\right)\right|=\frac{8}{3}(\alpha-1)$, while $\frac{2}{3}(\alpha-1)-3 \leqslant\left|V\left(P_{x y}\right) \cap U_{q}\right| \leqslant \frac{2}{3}(\alpha-1)-2$.
Case 3. If $u_{1} \in U_{x}$ and $u_{2}, u_{3}, u_{4} \in U_{y}$ then we form $P_{x y}$ as follows:

$$
x x|x x| x x|q x| x x|\ldots| q x|x x \underbrace{|x y| y y \mid}_{e} y q| y y|y q| \ldots|y y| y q|y y| y y \mid y y .
$$

This time $\left|V\left(P_{x y}\right)\right|=\frac{8}{3}(\alpha-1)-2$ and $\left|V\left(P_{x y}\right) \cap U_{q}\right|=\frac{2}{3}(\alpha-1)-4$.
Case 4. If $u_{1}, u_{2} \in U_{x}, u_{3} \in U_{y}$ and $u_{4} \notin U_{y}$, the path $P_{x y}$ is constructed as follows:

$$
x x|x x| q x|x x| \ldots|q x| x x|q x \underbrace{|x x| * y \mid}_{e} y y| y q|y y| \ldots|y q| y y|y y| y y .
$$

Now $\left|V\left(P_{x y}\right)\right|=\frac{8}{3}(\alpha-1)$ and $\frac{2}{3}(\alpha-1)-3 \leqslant\left|V\left(P_{x y}\right) \cap U_{q}\right| \leqslant \frac{2}{3}(\alpha-1)-2$.
Case 5. If $u_{1}, u_{2} \in U_{x}$ and $u_{3}, u_{4} \in U_{y}$, we form the path $P_{x y}$ as follows:

$$
x x|x x| q x|x x| \ldots|q x| x x|q x \underbrace{|x x| y y \mid}_{e} y q| y y|y q| \ldots|y y| y q|y y| y y .
$$

We have again $\left|V\left(P_{x y}\right)\right|=\frac{8}{3}(\alpha-1)$, while $\left|V\left(P_{x y}\right) \cap U_{q}\right|=\frac{2}{3}(\alpha-1)-2$.
Let us now set aside p 2-element disjoint subsets B_{1}, \ldots, B_{p} of U_{q+1} which correspond to disjoint edges of the graph G, one from each triangle of G. Set $B=\bigcup_{i=1}^{p} B_{i}$. These pairs will be used to glue together all p paths into a Hamiltonian 2-cycle.

To describe the remaining paths, let symbol w represent any element of the set

$$
W:=\bigcup_{i=p-1}^{q-3} U_{i} \cup U_{q} \cup\left(U_{q+1} \backslash B\right) \backslash V\left(P_{x y}\right)
$$

Construction of $\boldsymbol{P}_{\boldsymbol{j}}, \boldsymbol{j}=\mathbf{1}, \ldots, \boldsymbol{p}-\mathbf{2}$. For $j=1, \ldots, p-2$, we build path P_{j} by splitting $\alpha-4$ vertices of U_{j} into $(\alpha-4) / 3$ blocks of length 3 , separating them by arbitrary vertices from W and putting the remaining 4 vertices of U_{j} at the end. In a diagram form

$$
P_{j}=j j|j w| j j|j w| \ldots|j j| j w|j j| j j .
$$

Because $j<\min \left\{i: U_{i} \cap W \neq \varnothing\right\}$, each pair of consecutive blocks of size two forms an edge of H_{1}. Also, $\left|V\left(P_{j}\right)\right|=\frac{4}{3}(\alpha-1)$, which means that P_{j} can accommodate precisely $(\alpha-4) / 3$ vertices from W. As, by our choice of q,

$$
\begin{equation*}
(p-2) \frac{\alpha-4}{3} \geqslant(q-p-1)(\alpha-1)+\frac{\alpha-1}{3}+3, \tag{44}
\end{equation*}
$$

we have

$$
\bigcup_{r=1}^{p-2} V\left(P_{j}\right) \supseteq \bigcup_{i=p-1}^{q-3} U_{i} \cup\left(U_{q} \backslash V\left(P_{x y}\right)\right)
$$

On the other hand, the difference between the L-H-S and R-H-S of (44) is less than $4 \frac{\alpha}{3} \ll p$, so that the surplus w-spots can be filled with some elements of U_{q+1}.

Construction of $\boldsymbol{P}_{\boldsymbol{q + 1}}$. The last path, P_{q+1}, consists of all the remaining vertices of U_{q+1} whose number is even, because n is even and every so far built path, as well as the set B, consists of an even number of vertices.

The constructed paths $P_{1}, \ldots, P_{p-2}, P_{x y}$, and P_{q+1} are now connected together, in arbitrary order, by the 2 -element blocks B_{1}, \ldots, B_{p}. Note that each B_{j} makes edges of H_{2} with arbitrary 2 -element sets from some $U_{i}, i=1, \ldots, q$. This completes the construction of a 2 -Hamiltonian cycle in $H+e$.

The proof of Theorem 4 follows immediately from Lemma 27 and Fact 26.

Acknowledgements

We thank the reviewers for carefully reading our manuscript and for giving suggestions that have been helpful to improve the manuscript.

References

[1] L. Clark and R. Entringer, Smallest maximally non-Hamiltonian graphs, Period. Math. Hungar. 14(1), 1983, 57-68.
[2] R. Glebov, Y. Person and W. Weps, On extremal hypergraphs for Hamiltonian cycles. European J. Combin., 33:544-555, 2012.
[3] G. Y. Katona, Hamiltonian chains in hypergraphs, A survey. Graphs, Combinatorics, Algorithms and its Applications, (ed. S. Arumugam, B. D. Acharya, S. B. Rao), Narosa Publishing House 2004.
[4] G. Y. Katona and H. Kierstead, Hamiltonian chains in hypergraphs. J. Graph Theory, 30:205-212, 1999.
[5] A. Ruciński and A. Żak, Hamilton saturated hypergraphs of essentially minimum size, Electr. J. Combin., 20(2), 2013, \#P25.
[6] A. Żak, Growth order for the size of smallest hamiltonian chain saturated uniform hypergraphs. European J. Combin., 34:724-735, 2013.

[^0]: *Research supported by the Polish NSC grant N201 604940 and the NSF grant DMS-1102086. Part of research performed during a visit to the Institut Mittag-Leffler (Djursholm, Sweden).
 ${ }^{\dagger}$ Research partially supported by the Polish Ministry of Science and Higher Education.

