The Generalization of Dirac's Theorem for Hypergraphs

Endre Szemerédi¹, Andrzej Ruciński^{2,*}, and Vojtěch Rödl^{3,**}

¹ Rutgers University, New Brunswick szemered@cs.rutgers.edu
² A. Mickiewicz University, Poznań, Poland rucinski@amu.edu.pl
³ Emory University, Atlanta, GA rodl@mathcs.emory.edu

1 Introduction and Main Result

A substantial amount of research in graph theory continues to concentrate on the existence of hamiltonian cycles and perfect matchings. A classic theorem of Dirac states that a sufficient condition for an n-vertex graph to be hamiltonian, and thus, for n even, to have a perfect matching, is that the minimum degree is at least n/2. Moreover, there are obvious counterexamples showing that this is best possible.

The study of hamiltonian cycles in hypergraphs was initiated in [1] where, however, a different definition than the one considered here was introduced. Given an integer $k \geq 2$, a k-uniform hypergraph is a hypergraph (a set system) where every edge (set) is of size k.

By a cycle we mean a k-uniform hypergraph whose vertices can be ordered cyclically v_1, \ldots, v_l in such a way that for each $i = 1, \ldots, l$, the set $\{v_i, v_{i+1}, \ldots, v_{i+k-1}\}$ is an edge, where for h > l we set $v_h = v_{h-l}$. A hamiltonian cycle in a k-uniform hypergraph H is a spanning cycle in H, that is, a sub-hypergraph of H which is a cycle and contains all vertices of H. A k-uniform hypergraph containing a hamiltonian cycle is called hamiltonian.

This notion and its generalizations have a potential to be applicable in many contexts which still need to be explored. An application in the relational database theory can be found in [2]. As observed in [5], the square of a (graph) hamiltonian cycle naturally coincides with a hamiltonian cycle in a hypergraph built on top of the triangles of the graph. More precisely, given a graph G, let Tr(G) be the set of triangles in G. Define a hypergraph $H^{Tr}(G) = (V(G), Tr(G))$. Then there is a one-to-one correspondence between hamiltonian cycles in $H^{Tr}(G)$ and the squares of hamiltonian cycles in G. For results about the existence of squares of hamiltonian cycles see, e.g., [6].

As another potential application consider a seriously ill patient taking 24 different pills on a daily basis, one at a time every hour. Certain combinations

^{*} Research supported by KBN grant 2 P03A 015 23. Part of research performed at Emory University, Atlanta.

 $^{^{\}star\star}$ Research supported by NSF grant DMS-0300529.

J. Jędrzejowicz and A. Szepietowski (Eds.): MFCS 2004, LNCS 3618, pp. 52–56, 2005.

[©] Springer-Verlag Berlin Heidelberg 2005

of three pills can be deadly if taken within 2.5 hour. Let D be the set of deadly triplets of pills. Then any safe schedule corresponds to a hamiltonian cycle in the hypergraph which is precisely the complement of D.

A natural extension of Dirac's theorem to k-graphs, $k \geq 2$, has been conjectured in [5], where as a sufficient condition one demands that every (k-1)-element set of vertices is contained in at least $\lfloor n/2 \rfloor$ edges. The following construction of a k-uniform hypergraph H_0 , also from [5], shows that the above conjecture, if true, is nearly best possible (best possible for k=3).

Let $V = V' \cup \{v\}$, |V| = n. Split $V' = X \cup Y$, where, $|X| = \lfloor \frac{n-1}{2} \rfloor$ and $|Y| = \lfloor \frac{n-1}{2} \rfloor$. The edges of H_0 are all k-element subsets S of V such that $|X \cap S| \neq \lfloor \frac{k}{2} \rfloor$ or $v \in S$. It is shown in [5] that H_0 is not hamiltonian, while every (k-1)-element set of vertices belongs to at least $\lfloor \frac{n-k+1}{2} \rfloor$ edges.

In [9] we proved an approximate version of the conjecture from [5] for k = 3, and in [11] we give a generalization of that result to k-uniform hypergraphs for arbitrary k.

Theorem 1 ([11]). Let $k \geq 3$ and $\gamma > 0$. Then, for sufficiently large n, every k-uniform hypergraph on n-vertices such that each (k-1)-element set of vertices is contained in at least $(1/2 + \gamma)n$ edges is hamiltonian.

2 The Idea of Proof

The idea of the proof is as follows. As a preliminary step, we find in H a powerful path A, called *absorbing* which has the property that *every* not too large subset of vertices can be "absorbed" by that path. We also put aside a small subset of vertices R which preserves the degree properties of the entire hypergraph.

On the sub-hypergraph $H' = H - (A \cup R)$ we find a collection of long, disjoint paths which cover almost all vertices of H'. Then, using R we "glue" them and the absorbing path A together to form a long cycle in H. In the final step, the vertices which are not yet on the cycle are absorbed by A to form a hamiltonian cycle in H.

The main tool allowing to cover almost all vertices by disjoint paths is a generalization of the regularity lemma from [12].

Given a k-uniform hypergraph H and k non-empty, disjoint subsets $A_i \subset V(H)$, i = 1, ..., k, we define $e_H(A_1, ..., A_k)$ to be the number of edges in H with one vertex in each A_i , and the density of H with respect to $(A_1, ..., A_k)$ as

$$d_H(A_1, \dots, A_k) = \frac{e_H(A_1, \dots, A_k)}{|A_1| \cdots |A_k|}.$$

A k-uniform hypergraph H is k-partite if there is a partition $V(H) = V_1 \cup \cdots \cup V_k$ such that every edge of H intersects each set V_i in precisely one vertex. For a k-uniform, k-partite hypergraph H, we will write d_H for $d_H(V_1, \ldots, V_k)$ and call it the density of H.

We say that a k-uniform, k-partite hypergraph H is ϵ -regular if for all $A_i \subseteq V_i$ with $|A_i| \ge \epsilon |V_i|$, i = 1, ..., k, we have

$$|d_H(A_1,\ldots,A_k)-d_H|\leq \epsilon.$$

The following result, called *weak regularity lemma* as opposed to the stronger result in [4], is a straightforward generalization of the graph regularity lemma from [12].

Lemma 1 (Weak regularity lemma for hypergraphs). For all $k \geq 2$, every $\epsilon > 0$ and every integer t_0 there exist T_0 and n_0 such that the following holds. For every k-uniform hypergraph H on $n > n_0$ vertices there is, for some $t_0 \leq t \leq T_0$, a partition $V(H) = V_1 \cup \cdots \cup V_t$ such that $|V_1| \leq |V_2| \leq \cdots \leq |V_t| \leq |V_1| + 1$ and for all but at most ϵt^k sets of partition classes $\{V_{i_1}, \ldots, V_{i_k}\}$, the induced k-uniform, k-partite sub-hypergraph $H[V_{i_1}, \ldots, V_{i_k}]$ of H is ϵ -regular.

The above regularity lemma, combined with the fact that every dense ϵ -regular hypergraph contains an almost perfect path-cover, yields an almost perfect path-cover of the entire hypergraph H.

3 Results for Matchings

A perfect matching in a k-uniform hypergraph on n vertices, n divisible by k, is a set of n/k disjoint edges. Clearly, every hamiltonian, k-uniform hypergraph with the number of vertices n divisible by k contains a perfect matching.

Given a k-uniform hypergraph H and a (k-1)-tuple of vertices v_1, \ldots, v_{k-1} , we denote by $N_H(v_1, \ldots, v_{k-1})$ the set of vertices $v \in V(H)$ such that $\{v_1, \ldots, v_{k-1}, v\} \in H$. Let $\delta_{k-1}(H) = \delta_{k-1}$ be the minimum of $|N_H(v_1, \ldots, v_{k-1})|$ over all (k-1)-tuples of vertices in H.

For all integer $k \geq 2$ and n divisible by k, denote by $t_k(n)$ the smallest integer t such that every k-uniform hypergraph on n vertices and with $\delta_{k-1} \geq t$ contains a perfect matching.

For k = 2, that is, in the case of graphs, we have $t_2(n) = n/2$. Indeed, the lower bound is delivered by the complete bipartite graph $K_{n/2-1,n/2+1}$, while the upper bound is a trivial corollary of Dirac's condition [3] for the existence of Hamilton cycles.

In [10] we study t_k for $k \geq 3$. As a by-product of our result about hamiltonian cycles in [11] (see Theorem 2 above), it follows that $t_k(n) = n/2 + o(n)$. Kühn and Osthus proved in [7] that

$$\frac{n}{2} - k + 1 \le t_k(n) \le \frac{n}{2} + 3k^2 \sqrt{n \log n}.$$

The lower bound follows by a simple construction, which, in fact, for k odd yields $t_k(n) \ge n/2 - k + 2$. For instance, when k = 3 and n/2 is an odd integer, split the vertex set into sets A and B of size n/2 each, and take as edges all triples of vertices which are either disjoint from A or intersect A in precisely two elements.

In [10] we improve the upper bound from [7].

Theorem 2. For every integer $k \geq 3$ there exists a constant C > 0 such that for sufficiently large n,

$$t_k(n) \le \frac{n}{2} + C \log n.$$

It is very likely that the true value of $t_k(n)$ is yet closer to n/2. Indeed, in [5] it is conjectured that $\delta_{k-1} \geq n/2$ is sufficient for the existence of a Hamilton cycle, and thus, when n is divisible by k, the existence of a perfect matching. Based on this conjecture and on the above mentioned construction from [7], we believe that $t_k(n) = n/2 - O(1)$. In fact, for k = 3, we conjecture that $t_3(n) = \lceil n/2 \rceil - 1$.

Our belief that $t_k(n) = n/2 - O(1)$ is supported by some partial results. For example, we are able to show that the threshold function $t_k(n)$ has a stability property, in the sense that hypergraphs that are "away" from the "extreme case" H_0 , described in Section 1, contain a perfect matching even when δ_{k-1} is smaller than but not too far from n/2.

Interestingly, if we were satisfied with only a partial matching, covering all but a constant number of vertices, then this is guaranteed already with n/2+o(n) replaced by n/k, that is, when $\delta_{k-1} \geq n/k$.

We have also another related result, about the existence of a fractional perfect matching, which is a simple consequence of Farkas' Lemma (see, e.g.,[8]). A fractional perfect matching in a k-uniform hypergraph H=(V,E) is a function $w:E\to [0,1]$ such that for each $v\in V$ we have

$$\sum_{e \ni v} w(e) = 1.$$

In particular, it follows from our result that if $\delta_{k-1}(H) \geq n/k$ then H has a fractional perfect matching, so, again, the threshold is much lower than that for perfect matchings.

References

- J. C. Bermond et al., Hypergraphes hamiltoniens, Prob. Comb. Theorie Graph Orsay 260 (1976) 39-43.
- J. Demetrovics, G. O. H. Katona and A. Sali, Design type problems motivated by database theory. *Journal of Statistical Planning and Inference* 72 (1998) 149-164.
- 3. G. A. Dirac, Some theorems for abstract graphs, *Proc. London Math. Soc.* (3) 2 (1952) 69-81.
- P. Frankl and V. Rödl, Extremal problems on set systems, Random Struct. Algorithms 20, no. 2, (2002) 131-164.
- Gyula Y. Katona and H. A. Kierstead, Hamiltonian chains in hypergraphs, J. Graph Theory 30 (1999) 205-212.
- J. Komlós, G. N. Sárközy and E. Szemerédi, On the Pósa-Seymour conjecture, J. Graph Theory 29 (1998) 167-176.
- D. Kuhn and D. Osthus, Matchings in hypergraphs of large minimum degree, submited.
- 8. L. Lovász & M.D. Plummer, *Matching theory*. North-Holland Mathematics Studies 121, Annals of Discrete Mathematics 29, North-Holland Publishing Co., Amsterdam; Akadémiai Kiadó, Budapest, 1986
- 9. V. Rödl, A. Ruciński and E. Szemerédi, A Dirac-type theorem for 3-uniform hypergraphs, *Combinatorics, Probability and Computing*, to appear.
- V. Rödl, A. Ruciński and E. Szemerédi, Perfect matchings in uniform hypergraphs with large minimum degree, submitted.

- 11. V. Rödl, A. Ruciński and E. Szemerédi, An approximative Dirac-type theorem for k-uniform hypergraphs, submitted.
- 12. E. Szemerédi, Regular partitions of graphs. Problemes combinatoires et theorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), pp. 399–401, Colloq. Internat. CNRS, 260, CNRS, Paris, 1978.