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1 Introduction and Main Result

A substantial amount of research in graph theory continues to concentrate on
the existence of hamiltonian cycles and perfect matchings. A classic theorem of
Dirac states that a sufficient condition for an n-vertex graph to be hamiltonian,
and thus, for n even, to have a perfect matching, is that the minimum degree is
at least n/2. Moreover, there are obvious counterexamples showing that this is
best possible.

The study of hamiltonian cycles in hypergraphs was initiated in [1] where,
however, a different definition than the one considered here was introduced.
Given an integer k ≥ 2, a k-uniform hypergraph is a hypergraph (a set system)
where every edge (set) is of size k.

By a cycle we mean a k-uniform hypergraph whose vertices can be or-
dered cyclically v1, . . . , vl in such a way that for each i = 1, . . . , l, the set
{vi, vi+1, . . . , vi+k−1} is an edge, where for h > l we set vh = vh−l . A hamil-
tonian cycle in a k-uniform hypergraph H is a spanning cycle in H , that is, a
sub-hypergraph of H which is a cycle and contains all vertices of H . A k-uniform
hypergraph containing a hamiltonian cycle is called hamiltonian.

This notion and its generalizations have a potential to be applicable in many
contexts which still need to be explored. An application in the relational database
theory can be found in [2]. As observed in [5], the square of a (graph) hamiltonian
cycle naturally coincides with a hamiltonian cycle in a hypergraph built on top
of the triangles of the graph. More precisely, given a graph G, let Tr(G) be the
set of triangles in G. Define a hypergraph HTr(G) = (V (G), T r(G)). Then there
is a one-to-one correspondence between hamiltonian cycles in HTr(G) and the
squares of hamiltonian cycles in G. For results about the existence of squares of
hamiltonian cycles see, e.g., [6].

As another potential application consider a seriously ill patient taking 24
different pills on a daily basis, one at a time every hour. Certain combinations
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of three pills can be deadly if taken within 2.5 hour. Let D be the set of deadly
triplets of pills. Then any safe schedule corresponds to a hamiltonian cycle in
the hypergraph which is precisely the complement of D.

A natural extension of Dirac’s theorem to k-graphs, k ≥ 2, has been con-
jectured in [5], where as a sufficient condition one demands that every (k − 1)-
element set of vertices is contained in at least �n/2� edges. The following con-
struction of a k-uniform hypergraph H0, also from [5], shows that the above
conjecture, if true, is nearly best possible (best possible for k = 3).

Let V = V ′ ∪{v}, |V | = n. Split V ′ = X ∪Y , where, |X | = �n−1
2 � and |Y | =

�n−1
2 �. The edges of H0 are all k-element subsets S of V such that |X∩S| �= �k

2 �
or v ∈ S. It is shown in [5] that H0 is not hamiltonian, while every (k−1)-element
set of vertices belongs to at least �n−k+1

2 � edges.
In [9] we proved an approximate version of the conjecture from [5] for k = 3,

and in [11] we give a generalization of that result to k-uniform hypergraphs for
arbitrary k.

Theorem 1 ([11]). Let k ≥ 3 and γ > 0. Then, for sufficiently large n, every
k-uniform hypergraph on n-vertices such that each (k−1)-element set of vertices
is contained in at least (1/2 + γ)n edges is hamiltonian.

2 The Idea of Proof

The idea of the proof is as follows. As a preliminary step, we find in H a powerful
path A, called absorbing which has the property that every not too large subset
of vertices can be “absorbed” by that path. We also put aside a small subset of
vertices R which preserves the degree properties of the entire hypergraph.

On the sub-hypergraph H ′ = H−(A∪R) we find a collection of long, disjoint
paths which cover almost all vertices of H ′. Then, using R we “glue” them and
the absorbing path A together to form a long cycle in H . In the final step, the
vertices which are not yet on the cycle are absorbed by A to form a hamiltonian
cycle in H .

The main tool allowing to cover almost all vertices by disjoint paths is a
generalization of the regularity lemma from [12].

Given a k-uniform hypergraph H and k non-empty, disjoint subsets Ai ⊂
V (H), i = 1, . . . , k, we define eH(A1, . . . , Ak) to be the number of edges in H
with one vertex in each Ai, and the density of H with respect to (A1, . . . , Ak) as

dH(A1, . . . , Ak) =
eH(A1, . . . , Ak)
|A1| · · · |Ak| .

A k-uniform hypergraph H is k-partite if there is a partition V (H) = V1 ∪
· · · ∪ Vk such that every edge of H intersects each set Vi in precisely one vertex.
For a k-uniform, k-partite hypergraph H , we will write dH for dH(V1, . . . , Vk)
and call it the density of H .

We say that a k-uniform, k-partite hypergraph H is ε-regular if for all
Ai ⊆ Vi with |Ai| ≥ ε|Vi|, i = 1, . . . , k, we have

|dH(A1, . . . , Ak) − dH | ≤ ε.
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The following result, called weak regularity lemma as opposed to the stronger
result in [4], is a straightforward generalization of the graph regularity lemma
from [12].

Lemma 1 (Weak regularity lemma for hypergraphs). For all k ≥ 2, every
ε > 0 and every integer t0 there exist T0 and n0 such that the following holds. For
every k-uniform hypergraph H on n > n0 vertices there is, for some t0 ≤ t ≤ T0,
a partition V (H) = V1 ∪ · · · ∪ Vt such that |V1| ≤ |V2| ≤ · · · ≤ |Vt| ≤ |V1| + 1
and for all but at most εtk sets of partition classes {Vi1 , . . . , Vik

}, the induced
k-uniform, k-partite sub-hypergraph H [Vi1 , . . . , Vik

] of H is ε-regular.

The above regularity lemma, combined with the fact that every dense ε-
regular hypergraph contains an almost perfect path-cover, yields an almost per-
fect path-cover of the entire hypergraph H .

3 Results for Matchings

A perfect matching in a k-uniform hypergraph on n vertices, n divisible by k,
is a set of n/k disjoint edges. Clearly, every hamiltonian, k-uniform hypergraph
with the number of vertices n divisible by k contains a perfect matching.

Given a k-uniform hypergraph H and a (k−1)-tuple of vertices v1, . . . , vk−1,
we denote by NH(v1, . . . , vk−1) the set of vertices v ∈ V (H) such that {v1, . . . ,
vk−1, v} ∈ H . Let δk−1(H) = δk−1 be the minimum of |NH(v1, . . . , vk−1)| over
all (k − 1)-tuples of vertices in H .

For all integer k ≥ 2 and n divisible by k, denote by tk(n) the smallest integer
t such that every k-uniform hypergraph on n vertices and with δk−1 ≥ t contains
a perfect matching.

For k = 2, that is, in the case of graphs, we have t2(n) = n/2. Indeed, the
lower bound is delivered by the complete bipartite graph Kn/2−1,n/2+1, while
the upper bound is a trivial corollary of Dirac’s condition [3] for the existence of
Hamilton cycles.

In [10] we study tk for k ≥ 3. As a by-product of our result about hamiltonian
cycles in [11] (see Theorem 2 above), it follows that tk(n) = n/2 + o(n). Kühn
and Osthus proved in [7] that

n

2
− k + 1 ≤ tk(n) ≤ n

2
+ 3k2

√
n logn.

The lower bound follows by a simple construction, which, in fact, for k odd yields
tk(n) ≥ n/2 − k + 2. For instance, when k = 3 and n/2 is an odd integer, split
the vertex set into sets A and B of size n/2 each, and take as edges all triples of
vertices which are either disjoint from A or intersect A in precisely two elements.

In [10] we improve the upper bound from [7].

Theorem 2. For every integer k ≥ 3 there exists a constant C > 0 such that
for sufficiently large n,

tk(n) ≤ n

2
+ C log n.
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It is very likely that the true value of tk(n) is yet closer to n/2. Indeed, in [5] it
is conjectured that δk−1 ≥ n/2 is sufficient for the existence of a Hamilton cycle,
and thus, when n is divisible by k, the existence of a perfect matching. Based
on this conjecture and on the above mentioned construction from [7], we believe
that tk(n) = n/2−O(1). In fact, for k = 3, we conjecture that t3(n) = �n/2�−1.

Our belief that tk(n) = n/2−O(1) is supported by some partial results. For
example, we are able to show that the threshold function tk(n) has a stability
property, in the sense that hypergraphs that are “away” from the “extreme case”
H0, described in Section 1, contain a perfect matching even when δk−1 is smaller
than but not too far from n/2.

Interestingly, if we were satisfied with only a partial matching, covering all
but a constant number of vertices, then this is guaranteed already with n/2+o(n)
replaced by n/k, that is, when δk−1 ≥ n/k.

We have also another related result, about the existence of a fractional perfect
matching, which is a simple consequence of Farkas’ Lemma (see, e.g.,[8]). A
fractional perfect matching in a k-uniform hypergraph H = (V, E) is a function
w : E → [0, 1] such that for each v ∈ V we have

∑

e�v

w(e) = 1.

In particular, it follows from our result that if δk−1(H) ≥ n/k then H has a
fractional perfect matching, so, again, the threshold is much lower than that for
perfect matchings.
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