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Abstract

A perfect matching in a k-uniform hypergraph on n vertices, n
divisible by k, is a set of n/k disjoint edges. In this paper we give
a sufficient condition for the existence of a perfect matching in terms
of a variant of the minimum degree. We prove that for every k ≥ 3
and sufficiently large n, a perfect matching exists in every n-vertex
k-uniform hypergraph in which each set of k − 1 vertices is contained
in n/2 + Ω(log n) edges. Owing to a construction in [7], this is nearly
optimal. For almost perfect and fractional perfect matchings we show
that analogous thresholds are close to n/k rather than n/2.
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1 Introduction

Given a k-uniform hypergraph H and a (k−1)-tuple of vertices v1, . . . , vk−1,
we denote by NH(v1, . . . , vk−1) the set of vertices v ∈ V (H) such that
{v1, . . . , vk−1, v} ∈ H . Let δk−1(H) = δk−1 be the minimum of
|NH(v1, . . . , vk−1)| over all (k − 1)-tuples of vertices in H .

For all integers k ≥ 2 and n divisible by k, denote by tk(n) the smallest
integer t such that every k-uniform hypergraph on n vertices and with δk−1 ≥
t contains a perfect matching, that is a set of n/k disjoint edges.

For k = 2, that is, in the case of graphs, we have t2(n) = n/2. Indeed, the
lower bound is delivered by the complete bipartite graph Kn/2−1,n/2+1, while
the upper bound is a trivial corollary of Dirac’s condition for the existence
of Hamilton cycles (there is also an easy direct argument – see Proposition
2.1 below).

The main goal of this paper is to study tk(n) for k ≥ 3. As a by-product
of a result about Hamilton cycles in [13], it follows that tk(n) = n/2 + o(n).
Kühn and Osthus proved in [7] that

n

2
− 2

⌊

k

2

⌋

+ 1 ≤ tk(n) ≤ n

2
+ 3k2

√

n log n. (1)

The lower bound follows by a simple construction. For instance, when k = 3
and n/2 is an odd integer, split the vertex set into sets A and B of size n/2
each and take as edges all triples of vertices which are either disjoint from A
or intersect A in precisely two elements (see Figure 1).

For the upper bound, Kühn and Osthus used the probabilistic method and
a reduction to the k-partite case. By employing ‘the method of absorption’,
first used in [10] in the context of Hamilton (hyper)cycles, we improve the
upper bound, replacing the term O(

√
n log n) by O(log n).

Theorem 1.1 For every integer k ≥ 3 there exists a constant C > 0 such
that for sufficiently large n,

tk(n) ≤ n

2
+ C log n.

Remark 1.1 It is very likely that the true value of tk(n) is yet closer to n/2.
Indeed, in [13] it is conjectured that δk−1 ≥ n/2 is sufficient for the existence
of a tight Hamilton cycle (‘tight’ means here that every k consecutive vertices
form an edge). When n is divisible by k, such a cycle, clearly, contains a
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Figure 1: A 3-uniform hypergraph H3(n) with δ2 = n/2 − 2 and no perfect
matching (|A| = |B| = n/2 is an odd integer).

perfect matching. Based on this conjecture and on the above mentioned
construction from [7], we believe that tk(n) = n/2 − O(1). In fact, for
k = 3, a proof in [11] (which is still work in progress) suggests that already
δ2 ≥ n/2 − 1 guarantees a tight Hamilton path, which, again, for n divisible
by k, yields a perfect matching. Hence, in view of (1) it is reasonable to
conjecture that t3(n) = ⌈n/2⌉ − 1.

Remark 1.2 Our belief that tk(n) = n/2−O(1) is supported by some partial
results. For example, we can show that the threshold function tk(n) has a
stability property, in the sense that hypergraphs that are “away” from an
“extreme case” contain a perfect matching even when δk−1 is smaller than
but not too far from n/2.

More precisely, let Hk = Hk(n) be the k-uniform hypergraph on n ver-
tices, described in [7], which yields the lower bound on tk(n). Then for every

ε > 0 there exists γ > 0 such that whenever δk−1(H) > (1/2−γ)n and for ev-

ery copy H ′ of H , with V (H ′) = V (Hk), we have |E(H ′)\E(Hk)| > εnk, then

H contains a perfect matching. This and other related results will appear in
[12].

Interestingly, if we were satisfied with an ‘almost perfect matching’, which
covers all but rk vertices, where r ≥ 1 is fixed, then this is guaranteed
already by the condition δk−1 ≥ c(r, k)n, where c(r, k) = 1/k for r ≥ k − 2
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and c(r, k) < 1/2 for all r ≥ 1 (see Propositions 2.1 and 2.2 in Section 2.1).
The fact that an almost perfect matching appears already when δk−1(H) is
significantly smaller than n/2, plays a crucial role in our proof of Theorem
1.1.

In the case when r ≥ k−2, Kühn and Osthus in [7] obtained an analogous
result about almost perfect matchings in k-partite k-uniform hypergraphs.
However, for general k-uniform hypergraphs, they have, similarly as in (1),
an additive O(

√
n log n) term. Moreover, Kühn and Osthus [7] gave examples

showing that n/k is essentially best possible.
In the last section we present some results about the existence of fractional

perfect matchings in k-uniform hypergraphs, which are a simple consequence
of Farkas’ Lemma (see, e.g., [3] or [8]). A fractional perfect matching in a
k-uniform hypergraph H = (V, E) is a function w : E → [0, 1] such that for
each v ∈ V we have

∑

e∋v

w(e) = 1.

It follows that if an n-vertex k-uniform hypergraph has a fractional perfect
matching then

∑

e∈H

w(e) =
n

k
. (2)

In particular, we prove that if δk−1(H) ≥ n/k then H has a fractional
perfect matching, so, again, the threshold is much lower than that for perfect
matchings. Moreover, this is optimal in the sense that there exists an n-vertex
k-uniform hypergraph with δk−1(H) = ⌈n/k⌉ − 1 which has no fractional
perfect matching.

Acknowledgements. We would like to thank Joanna Polcyn for several
discussions and suggestions, and for careful proof-reading of the manuscript,
as well as to Mark Siggers for drawing the figures. Our thanks are also due
to Daniela Kühn and Deryk Osthus for sending us an early version of their
manuscript [7]. Finally, we are grateful to the referees for their valuable
comments and suggestions.
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2 Proof of Theorem 1.1

2.1 Almost perfect matchings

We first prove a simple result guaranteeing an ‘almost perfect matching’
already when δk−1 is close to n/k. Let β(H) denote the size of a largest

matching in H and, for r = 1, 2, . . . , let t
(r)
k (n) be the smallest integer t such

that for every k-uniform hypergraph H on n vertices and with δk−1(H) ≥ t
we have β(H) ≥ n/k − r.

Proposition 2.1 For all integers k ≥ 2, r ≥ k − 2 and n divisible by k,

t
(r)
k (n) =

n

k
− r.

Proof: The lower bound t
(r)
k (n) ≥ n/k − r, true in fact for all r ≥ 1, is

a consequence of the following construction provided by Kühn and Osthus
in [7] (Lemma 17 with q = r + 1). Let us split the vertex set into an
(n/k − r − 1)-element set A and an (n − |A|)-element set B, and take as
edges all k-element sets of vertices which intersect A. We have δk−1 = |A|,
but, on the other hand, the size of any matching is at most |A|.

For the upper bound, we only give the proof in the case r = k − 2. For
r ≥ k − 2 the proof is practically the same.

Let M be a largest matching in H and suppose that M misses at least
k(k − 1) vertices, that is, |M | ≤ n/k − k + 1. Let us arbitrarily group these
vertices into k disjoint sets f1, . . . , fk of size k − 1. Each set fi is contained
in at least n/k − k + 2 edges of H whose k-th vertices are all in V (M).
Altogether, the sets f1, . . . , fk send at least k(n/k−k +2) edges into M , and
thus, by averaging, there is an edge e in M which receives at least

⌈

k(n/k − k + 2)

|M |

⌉

≥
⌈

k(n/k − k + 2)

n/k − k + 1

⌉

≥ k + 1

of these edges. But this means that there are two distinct vertices u1, u2 ∈ e
and two (disjoint) sets fi1 and fi2 such that ej = fij ∪ {uj} ∈ H , j = 1, 2.
Replacing e by e1 and e2 yields a larger matching than M – a contradiction
(see Figure 2).

An open problem that remains is to determine t
(r)
k (n) for 1 ≤ r ≤ k − 3.

Observe that, in view of Proposition 2.1, the smallest unknown instance is
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t
(1)
4 (n). We have only a partial result in this direction, which shows, never-

theless, that already for r = 1 the parameter t
(r)
k (n) is substantially smaller

than n/2. For k ≥ 4, let

c(r, k) =

{

k2−k+2
2k2 r = 1,

k−1
(r+1)k

2 ≤ r ≤ k − 3.
(3)

Note that we have 1/k < c(r, k) < 1/2.

Proposition 2.2 For all k ≥ 4 and 1 ≤ r ≤ k − 3, we have

t
(r)
k (n) ≤ c(r, k)n.

Proof: We only give the proof in the most interesting case r = 1, leaving the
similar proof in the general case for the reader. Set c = c(1, k), and assume
that δk−1(H) ≥ cn but β(H) ≤ n/k − 2. Let M be a largest matching in H ,
and let S be the set of vertices not covered by M . Then, s = |S| ≥ 2k, and
for every (k− 1)-tuple of vertices f ∈

(

S
k−1

)

, we have |NH(f)| ≥ cn, and, due
to the maximality of M , NH(f) ⊆ V (M). Thus, by averaging, there is an
edge e0 ∈ M such that the set of edges

E0 = {e ∈ H : |e ∩ e0| = 1, |e ∩ S| = k − 1}

has size

|E0| ≥
(

s
k−1

)

cn

|M | >

(

s

k − 1

)

ck. (4)

Let us partition
(

S
k−1

)

=
⋃k

i=0 Ai, where

Ai =

{

f ∈
(

S

k − 1

)

: |{e ∈ E0 : e ⊃ f}| = i

}

.

Further, let B =
⋃k

i=2 Ai. Then

|A0| + |A1| + |B| =

(

s

k − 1

)

(5)

and
∑k

i=1 i|Ai| = |E0|, yielding, by (4),

|A1| + k|B| >

(

s

k − 1

)

ck. (6)
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Note that for all f ∈ B and g ∈ A1∪B, we have f ∩g 6= ∅, since otherwise M
could be enlarged. Thus, for every f ∈ B, all

(

s−k+1
k−1

)

(k−1)-tuples g ⊂ S \f

belong to A0. Since every g ∈ A0 is counted here at most
(

s−k+1
k−1

)

times, we
conclude that |A0| ≥ |B|.

Using this fact, recalling that s ≥ 2k, and subtracting (5) from (6), we
infer that

|B| >
1

k − 2

(

s

k − 1

)

(ck − 1) ≥
(

s

k − 1

)

k − 1

2k
≥
(

s − 1

k − 2

)

.

However, by the Erdős-Ko-Rado theorem (see [4]), this means that there are
two disjoint (k − 1)-tuples in B, and M can be enlarged – a contradiction.

It is interesting to note that the same proof yields the following result.
Let k ≥ 3 and n = k − 1 (mod k). If

δk−1(H) ≥
(

1

2
− k − 2

2k(2k − 1)

)

n,

then β(H) = ⌊n/k⌋. Hence, there is in H a matching as perfect as it gets,
already when δk−1(H) is well below n/2. For instance, when n = 3m + 2,
then a matching of size m is guaranteed already by δ2 ≥ 7n/15. On the
other hand, by (1), we know that for n = 3m, δ2 ∼ n/2 is the threshold for
the presence of a perfect matching. In the case n = 3m + 1 it remains open
whether a matching of size m is guaranteed by δ2 ≥ cn for some c < 1/2.

2.2 The idea of the proof of Theorem 1.1

We first come up with an absorption device allowing to include outstanding
vertices into an existing matching.

Definition 2.1 For a k-tuple of vertices W , we call an edge e ∈ H friendly
(with respect to W ) if e ∩ W = ∅ and there are vertices u0 ∈ e and w0 ∈ W
such that e1 = e \ {u0} ∪ {w0} ∈ H and e2 = W \ {w0} ∪ {u0} ∈ H (see
Figure 3).

The concept of a friendly edge will be used in the following context. For a
given matching M , if the vertices of W are outside M , while e is an edge of
M which is friendly with respect to W , then M can be enlarged by replacing
e with the edges e1 and e2.
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e1

e2

e

k

k−1

Figure 2: The proof of Proposition 2.1: the edge e is replaced by e1 and e2.

e1

e2

w0

u0

W e

Figure 3: The edge e is friendly with respect to the set W .

8



The basic idea of the proof of Theorem 1.1 is to first find a relatively
small, though ‘powerful’ matching M0, which contains a friendly edge eW

for every k-tuple of vertices W . Then, we apply Proposition 2.1 (for k = 3)
or Proposition 2.2 (for k ≥ 4), both with r = 1, to the sub-hypergraph
H ′ = H − V (M0) induced by the vertices not in M0. This way we obtain
a matching M1 covering all vertices of H ′, except possibly for a set W of k
vertices. Using the presence of a friendly edge eW in M0, the vertices in W
can be “absorbed” into M0 ∪ M1 to form a perfect matching of H .

In order to be able to apply Propositions 2.1 and 2.2 to the sub-hypergraph
H ′, the ‘magic’ matching M0 must be sufficiently small so that

δk−1(H
′) ≥ δk−1(H) − |V (M0)| ≥ c(1, k)|V (H ′)|, (7)

where c(1, 3) = 1/3 and c(1, k) for k ≥ 4 is given by formula (3).
Thus, Theorem 1.1 will be proved if we show the following lemma.

Lemma 2.1 For each k ≥ 3 and for all 0 < c ≤ 1/(10k), there exists C > 0
such that for a k-uniform n-vertex hypergraph H, where n is sufficiently large,
if

δk−1(H) ≥ n

2
+ C log n,

then there exists a matching M0 in H with |V (M0)| ≤ cn and such that for
every k-tuple of vertices W there is an edge in M0 which is friendly with
respect to W .

Note that (7) holds, and thus the proof of Theorem 1.1 follows, because we
have 1/2 − c > c(1, k).

Our proof of Lemma 2.1 combines the probabilistic method (random
matchings) with bounds on permanents (Minc conjecture). This approach
was employed also in [7], and earlier, but in a different context, in [1, 9].

2.3 The proof of Lemma 2.1

We first present the idea of the proof. Observe that given W , for every
(k − 2)–element set of vertices U which is disjoint from W , there are more
than n/2 vertices v such that for at least 2C log n further vertices u, the
k-tuple e = U ∪ {v, u} forms an edge of H which is friendly with respect to
W (this is better explained in the proof of Claim 2.1 below).

In order to make use of this observation, we find it convenient to partition
the entire vertex set V = V (H) into three sets V1, V2, V3, in proportion (k −

9



L (U)
w

W

u

v

U

Figure 4: An illustration of Definition 2.2.

2) : 1 : 1, and will build the desired matching M0 in three steps, corresponding
to the above described ingredients of a friendly edge: U ⊂ V1, v ∈ V2 and
u ∈ V3 (see Figure 6).

The existence of a suitable partition V1, V2, V3 (see Claim 2.2 below), as
well as the choices of v′s and u′s (Claims 2.3 and 2.4) will be obtained by the
probabilistic method, that is, we will analyze the respective random struc-
tures and prove that with positive probabilities they posses all the properties
we need.

Definition 2.2 For each W ∈
(

V
k

)

, let F W be the sub-hypergraph of H

consisting of all edges of H which are friendly to W . For each U ∈
(

V \W
k−2

)

define the graph
LW (U) = (V W

U , EW
U ),

where EW
U is the set of all pairs {v, u} such that U ∪ {v, u} ∈ F W and

V W
U =

⋃

e∈EW
U

e (see Figure 4).
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Claim 2.1 For each W ∈
(

V
k

)

and U ∈
(

V \W
k−2

)

we have

|V W
U | >

n

2

and
δ(LW (U)) ≥ 2C log n − 1.

Proof: We fix w0 ∈ W and will only consider edges which are friendly to W
with this fixed choice of w0. There are at least

δk−1 − k + 1 ≥ n/2 + C log n − k + 1 > n/2

choices of a vertex v 6∈ W such that e1 = U ∪ {v} ∪ {w0} ∈ H . Given v,
there are at least 2C log n − 1 vertices u 6= w0 such that e = U ∪ {v, u} ∈ H
and e2 = W \ {w0} ∪ {u} ∈ H . Indeed, u must belong to the intersection
of three sets: N1 – the neighborhood of U ∪ {v}, N2 – the neighborhood of
W \ {w0} and V ′ = V \ (W ∪ U ∪ {v}). Since for i = 1, 2

|Ni ∩ V ′| ≥ n

2
+ C log n − k,

there are at least

n + 2C log n − 2k − (n − 2k + 1) = 2C log n − 1

such vertices. Hence, each choice of v and u as above yields a friendly (with
respect to W ) edge e. In particular, v ∈ V W

U , proving the first inequality of
Claim 2.1, and each such v has at least 2C log n − 1 neighbors u in LW (U),
proving the second inequality.

Next, we will find a suitable partition of V in such a way that the estimates
of Claim 2.1 are proportionally preserved for a sub-hypergraph consisting
only of the edges “spanned” by the partition. Recall that NG(v) stands for
the neighborhood of a vertex v in a graph G.

Claim 2.2 There exists a partition

V = V1 ∪ V2 ∪ V3, where |V2| = |V3| = n/k,

such that for each W ∈
(

V
k

)

and U ∈
(

V \W
k−2

)

|V W
U ∩ V2| ≥

n

3k
,
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and for all v ∈ V W
U

|NLW (U)(v) ∩ V3| ≥
C

k
log n.

Proof: Take a random partition

V = V1 ∪ V2 ∪ V3, where |V2| = |V3| = n/k.

By Claim 2.1, for all W ∈
(

V
k

)

and U ∈
(

V \W
k−2

)

, the expected size of |V W
U ∩V2| is

|V W
U |/k > n/(2k), and, for each v ∈ V W

U , the expected size of |NLW (U)(v)∩V3|
is at least (2C/k) log n − 1/k.

Thus, by the Chernoff bound for hypergeometric distributions (see, e.g.,
Thm. 2.10, inequality (2.6) in [5]),

P(|V W
U ∩ V2| < n/3k) = e−Ω(n)

and

P(|NLW (U)(v) ∩ V3| < (C/k) log n) ≤ exp

{

− C

5k
log n

}

= o(n−2k+1),

provided C ≥ 10k2. Consequently, with probability 1−o(1), for all W ∈
(

V
k

)

,

U ∈
(

V \W
k−2

)

, and all v ∈ V W
U , both claimed inequalities hold. Thus, there

exists such a partition.

Let us fix one partition V = V1∪V2∪V3 guaranteed by Claim 2.2 and take
an arbitrary family U = {U1, . . . , Ucn}, of disjoint (k − 2)-element subsets of
V1 (we assume for simplicity that cn is an integer). We will select a desired
matching M in two random steps, involving, in turn, the sets V2 and V3.

Let K(U , V2) be the complete bipartite graph with bipartition (U , V2),
and for each W ∈

(

V
k

)

let GW
12 be the graph of those pairs (Ui, v) for which

v ∈ V W
Ui

.

Claim 2.3 There is a subset of indices I ⊆ {1, 2, . . . , cn} of size |I| ≥ 0.9cn,
and there is a matching

M12 = {(Ui, vi) : i ∈ I}

in K(U , V2) such that for each W ∈
(

V
k

)

,

|M12 ∩ GW
12 | ≥ 0.15cn.
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Proof: Take a random sequence (v1, . . . , vcn) of the vertices from V2, chosen
one by one, uniformly at random, with repetitions (this corresponds to letting
each Ui choose its match at random with no regard to other choices).

Let, for each W ∈
(

V
k

)

,

IW := {i : vi ∈ V W
Ui

}.

Fact 2.1 (i) With probability at least 1/2, the number of repetitions among
(v1, . . . , vcn) is at most kc2n.

(ii) For each W ∈
(

V
k

)

,

P(|IW | < cn/4) = e−Ω(n).

The proofs of all Facts will be deferred to Section 2.4. By Fact 2.1, there
is a choice of v1, . . . , vcn such that for each W ∈

(

V
k

)

we have |IW | ≥ cn/4,
and, at the same time, there are at least (c−kc2)n mutually distinct vertices
among v1, . . . , vcn. Let I be the set of indices of these distinct vertices. Then

|{i ∈ I : vi ∈ V W
Ui

}| = |IW ∩ I| ≥
( c

4
− kc2

)

n ≥ 0.15cn,

where the last inequality follows from the bound c ≤ 1/(10k). The pairs
(Ui, vi), i ∈ I, determine a matching M12 in K(U , V2) such that, by the
definition of the graph GW

12 , for each W ∈
(

V
k

)

,

|M12 ∩ GW
12 | ≥ 0.15cn.

Finally, note that, again by our bound on c, we have

|I| ≥ (c − kc2)n ≥ 0.9cn.

This completes the proof of Claim 2.3.

Let M12 be a matching guaranteed by Claim 2.3,

V ∗
2 := V (M12) ∩ V2 = {vi : i ∈ I}.

For each W ∈
(

V
k

)

, let

TW := {vi ∈ V ∗
2 : vi ∈ V W

Ui
} = V (M12 ∩ GW

12) ∩ V2,

13



Ui

V1

V2

V3

v i

Ni
W

u

W

Figure 5: T W ⊂ V ∗
2 ⊂ V2, the elements of T W (V ∗

2 ) are encircled (crossed);
NW

i is the neighborhood of vi in GW
23 .
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and for each vi ∈ TW , let

NW
i = {u ∈ V3 : Ui ∪ {vi, u} ∈ F W} = NLW (Ui)(vi) ∩ V3,

where the hypergraph of friendly edges F W and the graph LW
U are defined in

Definition 2.2 (see Figure 5). Note that by Claim 2.3,

|TW | ≥ 0.15cn.

Further, let GW
23 be the bipartite graph of all pairs {vi, u}, where vi ∈ TW

and u ∈ NW
i . Note that the neighborhood of each vi in GW

23 is precisely the
set NW

i , and that, by Claim 2.2,

|NW
i | ≥ (C/k) log n.

Finally, we will select a suitable V ∗
2 -saturating matching M23 in the complete

bipartite graph K(V ∗
2 , V3).

Claim 2.4 There is a matching

M23 = {(vi, ui) : i ∈ I}

in K(V ∗
2 , V3) such that for each W ∈

(

V
k

)

,

M23 ∩ GW
23 6= ∅.

Proof: Set l := |V ∗
2 | = |I| and consider a random sequence (u1, . . . , ul) of

distinct vertices from V3, which can be naturally identified with the random
matching M23. We shall prove that for each W

P(M23 ∩ GW
23 = ∅) = o(n−k),

which is sufficient to claim that there is one matching M23 good for all W ’s
at once.

For the sake of the proof, given W , we will focus only on the sub-matching
MW

23 saturating the subset T W . We split the selection of MW
23 into two random

steps. First, we choose a random subset R ∈
(

V3

t

)

, where t = |T W |, and then
we will select a random perfect matching in K(T W , R).

Let E1 be the event that for all vi ∈ TW we have

|R ∩ NW
i | ≥ 0.1cC log n.
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Fact 2.2

P(¬E1) = o(n−k).

Let GR be the subgraph of GW
23 induced by T W ∪ R, and let E2 be the

event that the random perfect matching MR in K(T W , R) satisfies

MR ∩ GR 6= ∅.

Our last task will be to estimate P(¬E2 | E1).

Fact 2.3

P(¬E2 | E1) = o(n−k).

To quickly complete the proof of Claim 2.4, just note that by the law of
total probability and by Facts 2.2 and 2.3,

P(MW
23 ∩ GW

23 = ∅) ≤ P(¬E2 | E1) + P(¬E1) = o(n−k).

Only now we may finish off the proof of Lemma 2.1 and thus complete
the proof of Theorem 1.1 as explained in Section 2.2. Indeed, by Claim 2.4,
there is a V ∗

2 -saturating matching M23 in K(V ∗
2 , V3) which satisfies

M23 ∩ GW
23 6= ∅

for all W ∈
(

V
k

)

. This matching, together with the previously selected match-
ing M12 in K(U , V ∗

2 ), forms the required matching

M0 = {Ui ∪ {vi, ui} : i ∈ I}

in the hypergraph H (see Figure 6). Indeed, it follows from Claims 2.3 and
2.4 that for every W ∈

(

V
k

)

the matching M0 contains a friendly edge with
respect to W .

2.4 Proofs of Facts

In this section we give proofs of the three facts we used in the proof of
Lemma 2.1.
Proof of Fact 2.1:

16



U2 Ui UcnU1

u i

v i

Figure 6: Matching M0 constructed in the proof of Lemma 2.1.
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(i) The expected number of repeated choices among v1, . . . , vcn is at most

1 + · · · + (cn − 1)

n/k
=

(

cn
2

)

n/k
<

k

2
c2n,

and part (i) follows by Markov’s inequality.
(ii) For each i such that W ∩ Ui = ∅ (there are at least cn − k such

indices), let XW
i be the indicator of the event that vi ∈ V W

Ui
. The XW

i ’s are
independent, and by Claim 2.2 we have

P(XW
i = 1) =

|V W
Ui

∩ V2|
n/k

≥ 1

3
.

Set XW = |IW | and notice that XW =
∑

i X
W
i and (EXW ) ≥ (cn − k)/3 >

0.3cn, say. Hence, part (ii) follows by the Chernoff bound for generalized
binomial distributions (see, e.g., Thm. 2.8, inequality (2.6) in [5]).

Proof of Fact 2.2: For each vi ∈ TW , let

Yi = |R ∩ NW
i |

As Yi’s have hypergeometric distributions with expectations

t|NW
i |

n/k
≥ (0.15cn)(C/k) log n

n/k
= 0.15cC log n,

we have, again by the Chernoff bound,

P(Yi < 0.1cC log n) = o(n−k−1), (8)

for C sufficiently large with respect to both, k and c. By (8), we have

P(¬E) ≤
∑

vi∈T W

P (Yi < 0.1cC log n) = o(n−k).

For the proof of Fact 2.3 we will need a general result about a likely
intersection of a bipartite graph with a random perfect matching of the cor-
responding complete bipartite graph.

18



Proposition 2.3 Let A, B be two disjoint sets, |A| = |B| = m, and let G be
a bipartite graph with the bipartition V (G) = A ∪ B and with dm edges for
some 0 ≤ d = d(m) ≤ m. Further, let M be a random perfect matching in
the complete bipartite graph K(A, B). Then

P(M ∩ G = ∅) = O
(

e−d/4
)

.

We defer the proof to the end of this section.
Proof of Fact 2.3: Recall that GR is a bipartite graph with bipartition
(TW , R), where |T W | = |R| = t, and that MR is a random perfect matching
in the complete bipartite graph K(T W , R). We are to show that

P(MR ∩ GR = ∅ | E1) = o(n−k). (9)

Note that, by conditioning on E1, each vertex of T W has degree at least
d := 0.1cC log n in GR. Consequently, |E(GR)| ≥ dm, and Proposition 2.3
yields (9) for sufficiently large C.

Proof of Proposition 2.3: Without loss of generality we may assume that d ≤
m/2, since otherwise we could take a subgraph G′ of G with e(G′) = ⌊m2/2⌋,
noticing that

P(M ∩ G = ∅) ≤ P(M ∩ G′ = ∅).

Because of this initial adjustment, in order to prove Proposition 2.3, we will
have to show that

P(M ∩ G = ∅) = O
(

e−d/2
)

.

If M ∩ G = ∅, then M ⊆ G, where G = K(A, B) − G is the bipartite
complement of G. Thus

P(M ∩ G = ∅) = P(M ⊆ G) = M(G)/m!, (10)

where M(G) is the number of perfect matchings in G. Let J be the adjacency
matrix of G. Then M(G) is equal to the permanent of J .

Let d̄1, . . . , d̄m be the degrees of the vertices from A in G, which at the
same time are the row totals of J . Note that

∑

i

d̄i = (m − d)m.
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and that we may assume that δ(G) ≥ 1, since otherwise P(M ⊆ G) = 0.
Using Brégman’s celebrated upper bound on the permanent (known also as
the Minc Conjecture), see [2] for a probabilistic proof, we infer that

M(G) ≤
m
∏

i=1

d̄i!
1/d̄i . (11)

One can check that the above quantity is maximized when all d̄i’s are as close
to the average d̄ = m − d as possible. Indeed, it is enough to verify, for all
integers x ≥ 1, the inequality

x!1/x(x + 2)!1/(x+2) ≤ (x + 1)!2/(x+1)

or, equivalently,
(

x + 2

x + 1

)x2+x

≤ (x + 1)2x

x!2
.

The LHS of the latter inequality is, clearly, smaller than ex, On the RHS
we use Stirling’s bound x! < e1/12x

√
2πx(x/e)x, and check that the resulting

quantity is larger than ex (for x ≥ 4 it follows from the inequality ex > 7x,
while for x = 1, 2, 3 we just plug in the numbers.)

Assuming for clarity of exposition that d̄ is an integer, we thus have

m
∏

i=1

d̄i!
1/d̄i ≤

(

d̄!1/d̄
)m

. (12)

Now we need to refer again to Stirling’s estimates of the factorials. In a
weaker form they yield for each x and some c1, c2 > 0,

c1

√
x(x/e)x < x! < c2

√
x(x/e)x.

So, using also the bound m/d ≤ 2, we have

1

m!

(

d̄!1/d̄
)m

<
1

c1

√
m

(c2

√

d̄)m/d̄
( e

m

)m
(

d̄

e

)m

= O

(√

d̄m/d̄

m

(

d̄

m

)m
)

.

(13)
However, it can be easily checked that

d̄m/d̄

m
≤
(m

d̄

)m

, (14)

20



and hence, by (10–14)

M(G)

n!
= O

(

(

d̄

m

)m/2
)

= O

(

(

1 − d

m

)m/2
)

= O
(

e−d/2
)

.

3 Fractional perfect matchings

The well-known Farkas Lemma (see, e.g., [3] or [8]) asserts that the system
Ax ≤ 0,bx > 0 is unsolvable if and only if the system yA = b,y ≥ 0 is
solvable. Using this classic result we will now show a degree condition for
the existence of a fractional perfect matching in a k-uniform hypergraph. As
graphs with fractional perfect matchings are fully characterized by a Hall
-type condition (see, e.g., [8]), we from now on assume that k ≥ 3.

Let ∆k−1(H) be the maximum of |NH(v1, . . . , vk−1)| over all (k−1)-tuples
of vertices in H , and let GH be the (k−1)-uniform hypergraph of all (k−1)-
tuples of vertices with |NH(v1, . . . , vk−1)| < n/k.

It turns out that a fractional perfect matching is guaranteed even if we
allow several (k − 1)-tuples of vertices to have their degree smaller than n/k
(even zero), provided they are not clustered too much. The next result is in
a sense optimal.

Proposition 3.1 If |V (H)| = n and ∆k−2(GH) ≤ (k − 2)(n/k − 1) then
H has a fractional perfect matching. Moreover, there exists an n-vertex k-
uniform hypergraph with ∆k−2(GH) > (k − 2)(n/k − 1) having no fractional
perfect matching.

Proof: We apply Farkas’ Lemma with A – the incidence matrix of H and
b – the vector of length n whose all entries are equal to 1. All we need is
to show that the system of inequalities Ax ≤ 0,bx > 0 has no solutions.
Suppose that x1, . . . , xn is a solution to the system Ax ≤ 0. We will show
that bx ≤ 0.

Let us identify the vertices of H with the values x1, . . . , xn assigned to
them, and without loss of generality assume that x1 ≥ x2 ≥ · · · ≥ xn.
Let s be the smallest index for which |NH(x1, . . . , xk−2, xs)| ≥ n/k. By our
assumption,

s ≤ (k − 2)
(n

k
− 1
)

+ k − 1 = n − 2n

k
+ 1.
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For the sake of clarity, assume first that n is divisible by k.
Let Z ⊂ NH(x1, . . . , xk−2, xs), |Z| = n/k. Then, because Ax ≤ 0, we

have
z + xs + x1 + · · · + xk−2 ≤ 0 (15)

for each z ∈ Z. Let us partition all vertices of H into disjoint sets Ti,
i = 1, . . . , n/k, of size k, so that each set Ti consists of one vertex z(i) ∈ Z
and one vertex y(i) ≤ xs, while the remaining k− 2 vertices can be arbitrary.
Owing to the upper bound on s, there are at least 2n/k vertices xj ≤ xs, and
so, such a partition always exists.

Note that for each i, by (15), we have

∑

x∈Ti

x ≤ max
z∈Z

z + xs + x1 + · · · + xk−2 ≤ 0, (16)

which implies that
∑n

i=1 xi ≤ 0, that is, bx ≤ 0.
In the general case, when n is not necessarily divisible by k, we will

estimate k
∑n

i=1 xi instead. More specifically, we will find sets T (1), . . . , T (n)

of size k so that each vertex is contained in precisely k of them. To achieve
this goal, we “clone” each xj into k elements x

(l)
j , l = 1, . . . , k, where

x
(1)
j = · · · = x

(k)
j = xj.

for each j = 1, . . . , n. (Remember that we have identified each vertex xj with
the weight assigned to it.)

Also, for each l = 1, . . . , k, we choose a subset

Z(l) = {x(l)
j1

, . . . , x
(l)
j
m(l)

} ⊂ {x(l)
1 , . . . , x(l)

n }

such that, as before,

{xj1 , . . . , xj
m(l)

} ⊂ NH(x1, . . . , xk−2, xs)

and
k
∑

l=1

|Z(l)| =

k
∑

l=1

m(l) = n.

(This is always possible, since dH(x1, . . . , xk−2, xs) ≥ n/k.)

Now, we partition all the kn elements x
(l)
j , l = 1, . . . , k, j = 1, . . . , n,

into n disjoint sets Ti of size k, so that, as before, each of them contains one
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< k−2

> 2

B

A

k−1

Figure 7: An extremal hypergraph without a fractional perfect matching
used in the proof of the second part of Proposition 3.1.

element z(i) ∈ ⋃k
l=1 Z(l), and one element y(i) ≤ xs. Since there are at least

k⌈2n/k⌉ ≥ 2n elements x
(l)
j ≤ xs, this is always possible.

Finally, since (16) holds for each i = 1, . . . , n, we have

k

n
∑

j=1

xj =

k
∑

l=1

n
∑

j=1

x
(l)
j =

n
∑

i=1

∑

x∈Ti

x ≤ 0.

To prove the second part of Proposition 3.1, take two disjoint sets, A and
B, where

|A| = ⌊(k − 2)n/k⌋ + 1 and |B| = n − |A|,

and construct a k-uniform hypergraph H0 with the vertex set V (H0) = A∪B
and the edge set consisting of all k-tuples with at least two vertices in B (see
Figure 7; this example was found by J. Polcyn ). The only (k − 1)-tuples of
degree less than n/k (in fact, of degree 0) are those contained in A. Thus,

∆k−2(GH0) = |A| − (k − 2) = ⌊(k − 2)n/k⌋ − (k − 2) + 1 > (k − 2)(n/k − 1).

Suppose there is a fractional perfect matching in H0. Then the total
weight of the edges of H0 is at least |A|/(k − 2) > n/k, a contradiction with
(2).
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As an immediate corollary we obtain the following degree threshold result
for fractional perfect matchings in k-uniform hypergraphs. For all integers
k ≥ 3, denote by t∗k(n) the smallest integer t such that every k-uniform
hypergraph on n vertices and with δk−1 ≥ t has a perfect fractional matching.

Corollary 3.1 For all k ≥ 3 we have

t∗k(n) = ⌈n/k⌉.

Proof: To prove that t∗k(n) ≤ ⌈n/k⌉, let H be an arbitrary k-uniform, n-
vertex hypergraph with δk−1 ≥ ⌈n/k⌉. Then, GH = ∅, and the assumption
of Proposition 3.1 is vacuously satisfied. Hence, H has a fractional perfect
matching..

For the lower bound on t∗k(n), take two disjoint sets, A and B, where

|A| = n − ⌈n/k⌉ + 1 > n − n/k and |B| = ⌈n/k⌉ − 1.

Construct a k-uniform hypergraph H1 with vertex set V (H1) = A ∪ B and
edge set consisting of all k-tuples with at least one vertex in B. Note that
δk−1(H1) = |B|. On the other hand, if there was a fractional perfect matching
in H1, then the total weight of all the edges would be at least |A|/(k − 1) >
n/k, a contradiction with (2).
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